Neural networks with functional inputs for multi-class supervised classification of replicated point patterns
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10485051" target="_blank" >RIV/00216208:11320/24:10485051 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y9EXOqa.Cz" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Y9EXOqa.Cz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11634-024-00579-5" target="_blank" >10.1007/s11634-024-00579-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Neural networks with functional inputs for multi-class supervised classification of replicated point patterns
Popis výsledku v původním jazyce
A spatial point pattern is a collection of points observed in a bounded region of the Euclidean plane or space. With the dynamic development of modern imaging methods, large datasets of point patterns are available representing for example sub-cellular location patterns for human proteins or large forest populations. The main goal of this paper is to show the possibility of solving the supervised multi-class classification task for this particular type of complex data via functional neural networks. To predict the class membership for a newly observed point pattern, we compute an empirical estimate of a selected functional characteristic. Then, we consider such estimated function to be a functional variable entering the network. In a simulation study, we show that the neural network approach outperforms the kernel regression classifier that we consider a benchmark method in the point pattern setting. We also analyse a real dataset of point patterns of intramembranous particles and illustrate the practical applicability of the proposed method.
Název v anglickém jazyce
Neural networks with functional inputs for multi-class supervised classification of replicated point patterns
Popis výsledku anglicky
A spatial point pattern is a collection of points observed in a bounded region of the Euclidean plane or space. With the dynamic development of modern imaging methods, large datasets of point patterns are available representing for example sub-cellular location patterns for human proteins or large forest populations. The main goal of this paper is to show the possibility of solving the supervised multi-class classification task for this particular type of complex data via functional neural networks. To predict the class membership for a newly observed point pattern, we compute an empirical estimate of a selected functional characteristic. Then, we consider such estimated function to be a functional variable entering the network. In a simulation study, we show that the neural network approach outperforms the kernel regression classifier that we consider a benchmark method in the point pattern setting. We also analyse a real dataset of point patterns of intramembranous particles and illustrate the practical applicability of the proposed method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/EF19_073%2F0016935" target="_blank" >EF19_073/0016935: Grantová schémata na UK</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Data Analysis and Classification
ISSN
1862-5347
e-ISSN
1862-5355
Svazek periodika
18
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
705-721
Kód UT WoS článku
001157142200001
EID výsledku v databázi Scopus
2-s2.0-85184235291