A universal approach for multi-model schema inference
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10448404" target="_blank" >RIV/00216208:11320/22:10448404 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z102_n3FDd" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Z102_n3FDd</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s40537-022-00645-9" target="_blank" >10.1186/s40537-022-00645-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A universal approach for multi-model schema inference
Popis výsledku v původním jazyce
The variety feature of Big Data, represented by multi-model data, has brought a new dimension of complexity to all aspects of data management. The need to process a set of distinct but interlinked data models is a challenging task. In this paper, we focus on the problem of inference of a schema, i.e., the description of the structure of data. While several verified approaches exist in the single-model world, their application for multi-model data is not straightforward. We introduce an approach that ensures inference of a common schema of multi-model data capturing their specifics. It can infer local integrity constraints as well as intra- and inter-model references. Following the standard features of Big Data, it can cope with overlapping models, i.e., data redundancy, and it is designed to process efficiently significant amounts of data.To the best of our knowledge, ours is the first approach addressing schema inference in the world of multi-model databases.
Název v anglickém jazyce
A universal approach for multi-model schema inference
Popis výsledku anglicky
The variety feature of Big Data, represented by multi-model data, has brought a new dimension of complexity to all aspects of data management. The need to process a set of distinct but interlinked data models is a challenging task. In this paper, we focus on the problem of inference of a schema, i.e., the description of the structure of data. While several verified approaches exist in the single-model world, their application for multi-model data is not straightforward. We introduce an approach that ensures inference of a common schema of multi-model data capturing their specifics. It can infer local integrity constraints as well as intra- and inter-model references. Following the standard features of Big Data, it can cope with overlapping models, i.e., data redundancy, and it is designed to process efficiently significant amounts of data.To the best of our knowledge, ours is the first approach addressing schema inference in the world of multi-model databases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-22276S" target="_blank" >GA20-22276S: Unifikovaná správa multi-model dat</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Big Data
ISSN
2196-1115
e-ISSN
2196-1115
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
46
Strana od-do
1-46
Kód UT WoS článku
000839641800001
EID výsledku v databázi Scopus
2-s2.0-85135861976