Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

All Your bases Are Belong to Us: Listing All Bases of a Matroid by Greedy Exchanges

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10450763" target="_blank" >RIV/00216208:11320/22:10450763 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4230/LIPIcs.FUN.2022.22" target="_blank" >https://doi.org/10.4230/LIPIcs.FUN.2022.22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.FUN.2022.22" target="_blank" >10.4230/LIPIcs.FUN.2022.22</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    All Your bases Are Belong to Us: Listing All Bases of a Matroid by Greedy Exchanges

  • Popis výsledku v původním jazyce

    You provide us with a matroid and an initial base. We say that a subset of the bases &quot;belongs to us&quot; if we can visit each one via a sequence of base exchanges starting from the initial base. It is well-known that &quot;All your base are belong to us&quot;. We refine this classic result by showing that it can be done by a simple greedy algorithm. For example, the spanning trees of a graph can be generated by edge exchanges using the following greedy rule: Minimize the larger label of an edge that enters or exits the current spanning tree and which creates a spanning tree that is new (i.e., hasn&apos;t been visited already). Amazingly, this works for any graph, for any labeling of its edges, for any initial spanning tree, and regardless of how you choose the edge with the smaller label in each exchange. Furthermore, by maintaining a small amount of information, we can generate each successive spanning tree without storing the previous trees. In general, for any matroid, we can greedily compute a listing of all its bases matroid such that consecutive bases differ by a base exchange. Our base exchange Gray codes apply a prefix-exchange on a prefix-minor of the matroid, and we can generate these orders using &quot;history-free&quot;iterative algorithms. More specifically, we store O(m) bits of data, and use O(m) time per base assuming O(1) time independence and coindependence oracles. Our work generalizes and extends a number of previous results. For example, the bases of the uniform matroid are combinations, and they belong to us using homogeneous transpositions via an Eades-McKay style order. Similarly, the spanning trees of fan graphs belong to us via face pivot Gray codes, which extends recent results of Cameron, Grubb, and Sawada [Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan, COCOON 2021].

  • Název v anglickém jazyce

    All Your bases Are Belong to Us: Listing All Bases of a Matroid by Greedy Exchanges

  • Popis výsledku anglicky

    You provide us with a matroid and an initial base. We say that a subset of the bases &quot;belongs to us&quot; if we can visit each one via a sequence of base exchanges starting from the initial base. It is well-known that &quot;All your base are belong to us&quot;. We refine this classic result by showing that it can be done by a simple greedy algorithm. For example, the spanning trees of a graph can be generated by edge exchanges using the following greedy rule: Minimize the larger label of an edge that enters or exits the current spanning tree and which creates a spanning tree that is new (i.e., hasn&apos;t been visited already). Amazingly, this works for any graph, for any labeling of its edges, for any initial spanning tree, and regardless of how you choose the edge with the smaller label in each exchange. Furthermore, by maintaining a small amount of information, we can generate each successive spanning tree without storing the previous trees. In general, for any matroid, we can greedily compute a listing of all its bases matroid such that consecutive bases differ by a base exchange. Our base exchange Gray codes apply a prefix-exchange on a prefix-minor of the matroid, and we can generate these orders using &quot;history-free&quot;iterative algorithms. More specifically, we store O(m) bits of data, and use O(m) time per base assuming O(1) time independence and coindependence oracles. Our work generalizes and extends a number of previous results. For example, the bases of the uniform matroid are combinations, and they belong to us using homogeneous transpositions via an Eades-McKay style order. Similarly, the spanning trees of fan graphs belong to us via face pivot Gray codes, which extends recent results of Cameron, Grubb, and Sawada [Pivot Gray Codes for the Spanning Trees of a Graph ft. the Fan, COCOON 2021].

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-15272S" target="_blank" >GA22-15272S: Principy kombinatorického generování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Leibniz International Proceedings in Informatics, LIPIcs

  • ISBN

    978-3-95977-232-7

  • ISSN

    1868-8969

  • e-ISSN

  • Počet stran výsledku

    28

  • Strana od-do

    1-28

  • Název nakladatele

    Schloss Dagstuhl - Leibniz-Zentrum für Informatik

  • Místo vydání

    Dagstuhl, Německo

  • Místo konání akce

    Sicily

  • Datum konání akce

    30. 5. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku