Unique key Horn functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452154" target="_blank" >RIV/00216208:11320/22:10452154 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxQ8axtXsx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=mxQ8axtXsx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2022.04.022" target="_blank" >10.1016/j.tcs.2022.04.022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unique key Horn functions
Popis výsledku v původním jazyce
Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function h, representing the functional dependencies. If the knowledge of the attribute values in set A determines the value for attribute v, then A -> v is an implicate of h. If K is a key of the database, then K -> v is an implicate of h for all attributes v. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay, improving on earlier results. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the MINIMUM KEY problem is at least as hard as the MINIMUM TARGET SET SELECTION problem with bounded thresholds. (C) 2022 The Author(s). Published by Elsevier B.V.
Název v anglickém jazyce
Unique key Horn functions
Popis výsledku anglicky
Given a relational database, a key is a set of attributes such that a value assignment to this set uniquely determines the values of all other attributes. The database uniquely defines a pure Horn function h, representing the functional dependencies. If the knowledge of the attribute values in set A determines the value for attribute v, then A -> v is an implicate of h. If K is a key of the database, then K -> v is an implicate of h for all attributes v. Keys of small sizes play a crucial role in various problems. We present structural and complexity results on the set of minimal keys of pure Horn functions. We characterize Sperner hypergraphs for which there is a unique pure Horn function with the given hypergraph as the set of minimal keys. Furthermore, we show that recognizing such hypergraphs is co-NP-complete already when every hyperedge has size two. On the positive side, we identify several classes of graphs for which the recognition problem can be decided in polynomial time. We also present an algorithm that generates the minimal keys of a pure Horn function with polynomial delay, improving on earlier results. By establishing a connection between keys and target sets, our approach can be used to generate all minimal target sets with polynomial delay when the thresholds are bounded by a constant. As a byproduct, our proof shows that the MINIMUM KEY problem is at least as hard as the MINIMUM TARGET SET SELECTION problem with bounded thresholds. (C) 2022 The Author(s). Published by Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-19463S" target="_blank" >GA19-19463S: Reprezentace booleovských funkcí úplné vzhledem k jednotkové propagaci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
1879-2294
Svazek periodika
922
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
170-178
Kód UT WoS článku
000850360300014
EID výsledku v databázi Scopus
2-s2.0-85129694970