INFORMATION IN PROPOSITIONAL PROOFS AND ALGORITHMIC PROOF SEARCH
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452385" target="_blank" >RIV/00216208:11320/22:10452385 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W2s9w8mhFL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=W2s9w8mhFL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/jsl.2021.75" target="_blank" >10.1017/jsl.2021.75</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
INFORMATION IN PROPOSITIONAL PROOFS AND ALGORITHMIC PROOF SEARCH
Popis výsledku v původním jazyce
We study from the proof complexity perspective the (informal) proof search problem (cf. [17, Sections 1.5 and 21.5]):Is there an optimal way to search for propositional proofs?We note that, as a consequence of Levin's universal search, for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists.To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system P we attach information-efficiency function i(P)(tau) assigning to a tautology a natural number, and we show that:i(P)(tau) characterizes time any P-proof search algorithm has to use on tau,for a fixed P there is such an information-optimal algorithm (informally: it finds proofs of minimal information content),a proof system is information-efficiency optimal (its information-efficiency function is minimal up to a multiplicative constant) iff it is p-optimal,for non-automatizable systems P there are formulas tau with short proofs but having large information measure i(P)(tau).We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for i(P)(tau) where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.
Název v anglickém jazyce
INFORMATION IN PROPOSITIONAL PROOFS AND ALGORITHMIC PROOF SEARCH
Popis výsledku anglicky
We study from the proof complexity perspective the (informal) proof search problem (cf. [17, Sections 1.5 and 21.5]):Is there an optimal way to search for propositional proofs?We note that, as a consequence of Levin's universal search, for any fixed proof system there exists a time-optimal proof search algorithm. Using classical proof complexity results about reflection principles we prove that a time-optimal proof search algorithm exists without restricting proof systems iff a p-optimal proof system exists.To characterize precisely the time proof search algorithms need for individual formulas we introduce a new proof complexity measure based on algorithmic information concepts. In particular, to a proof system P we attach information-efficiency function i(P)(tau) assigning to a tautology a natural number, and we show that:i(P)(tau) characterizes time any P-proof search algorithm has to use on tau,for a fixed P there is such an information-optimal algorithm (informally: it finds proofs of minimal information content),a proof system is information-efficiency optimal (its information-efficiency function is minimal up to a multiplicative constant) iff it is p-optimal,for non-automatizable systems P there are formulas tau with short proofs but having large information measure i(P)(tau).We isolate and motivate the problem to establish unconditional super-logarithmic lower bounds for i(P)(tau) where no super-polynomial size lower bounds are known. We also point out connections of the new measure with some topics in proof complexity other than proof search.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Symbolic Logic
ISSN
0022-4812
e-ISSN
—
Svazek periodika
2022
Číslo periodika v rámci svazku
87
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
18
Strana od-do
852-869
Kód UT WoS článku
000792183800001
EID výsledku v databázi Scopus
2-s2.0-85117311692