Halfspace depth for general measures: the ray basis theorem and its consequences
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10452437" target="_blank" >RIV/00216208:11320/22:10452437 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=GP6VcyPcy</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00362-021-01259-8" target="_blank" >10.1007/s00362-021-01259-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Halfspace depth for general measures: the ray basis theorem and its consequences
Popis výsledku v původním jazyce
The halfspace depth is a prominent tool of nonparametric multivariate analysis. The upper level sets of the depth, termed the trimmed regions of a measure, serve as a natural generalization of the quantiles and inter-quantile regions to higher-dimensional spaces. The smallest non-empty trimmed region, coined the halfspace median of a measure, generalizes the median. We focus on the (inverse) ray basis theorem for the halfspace depth, a crucial theoretical result that characterizes the halfspace median by a covering property. First, a novel elementary proof of that statement is provided, under minimal assumptions on the underlying measure. The proof applies not only to the median, but also to other trimmed regions. Motivated by the technical development of the amended ray basis theorem, we specify connections between the trimmed regions, floating bodies, and additional equi-affine convex sets related to the depth. As a consequence, minimal conditions for the strict monotonicity of the depth are obtained. Applications to the computation of the depth and robust estimation are outlined.
Název v anglickém jazyce
Halfspace depth for general measures: the ray basis theorem and its consequences
Popis výsledku anglicky
The halfspace depth is a prominent tool of nonparametric multivariate analysis. The upper level sets of the depth, termed the trimmed regions of a measure, serve as a natural generalization of the quantiles and inter-quantile regions to higher-dimensional spaces. The smallest non-empty trimmed region, coined the halfspace median of a measure, generalizes the median. We focus on the (inverse) ray basis theorem for the halfspace depth, a crucial theoretical result that characterizes the halfspace median by a covering property. First, a novel elementary proof of that statement is provided, under minimal assumptions on the underlying measure. The proof applies not only to the median, but also to other trimmed regions. Motivated by the technical development of the amended ray basis theorem, we specify connections between the trimmed regions, floating bodies, and additional equi-affine convex sets related to the depth. As a consequence, minimal conditions for the strict monotonicity of the depth are obtained. Applications to the computation of the depth and robust estimation are outlined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometrické aspekty matematické statistiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Statistical Papers
ISSN
0932-5026
e-ISSN
1613-9798
Svazek periodika
63
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
35
Strana od-do
849-883
Kód UT WoS článku
000686447500001
EID výsledku v databázi Scopus
2-s2.0-85112859430