Reconstruction of atomic measures from their halfspace depth
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F21%3A10434778" target="_blank" >RIV/00216208:11320/21:10434778 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WK3saMylph" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=WK3saMylph</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmva.2021.104727" target="_blank" >10.1016/j.jmva.2021.104727</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reconstruction of atomic measures from their halfspace depth
Popis výsledku v původním jazyce
The halfspace depth can be seen as a mapping that to a finite Borel measure mu on the Euclidean space R-d assigns its depth, being a function R-d -> [0, infinity): x -> D (x; mu). The depth of mu quantifies how much centrally positioned a point x is with respect to mu. This function is intended to serve as generalization of the quantile function to multivariate spaces. We consider the problem of finding the inverse mapping to the halfspace depth: knowing only the function x -> D (x; mu), our objective is to reconstruct the measure mu. We focus on mu atomic with finitely many atoms, and present a simple method for the reconstruction of the position and the weights of all atoms of mu, from its depth only. As a consequence, (i) we recover generalizations of several related results known from the literature, with substantially simplified proofs, and (ii) design a novel reconstruction procedure that is numerically more stable, and considerably faster than the known algorithms. Our analysis presents a comprehensive treatment of the halfspace depth of those measures whose depths attain finitely many different values. (C) 2021 Elsevier Inc. All rights reserved.
Název v anglickém jazyce
Reconstruction of atomic measures from their halfspace depth
Popis výsledku anglicky
The halfspace depth can be seen as a mapping that to a finite Borel measure mu on the Euclidean space R-d assigns its depth, being a function R-d -> [0, infinity): x -> D (x; mu). The depth of mu quantifies how much centrally positioned a point x is with respect to mu. This function is intended to serve as generalization of the quantile function to multivariate spaces. We consider the problem of finding the inverse mapping to the halfspace depth: knowing only the function x -> D (x; mu), our objective is to reconstruct the measure mu. We focus on mu atomic with finitely many atoms, and present a simple method for the reconstruction of the position and the weights of all atoms of mu, from its depth only. As a consequence, (i) we recover generalizations of several related results known from the literature, with substantially simplified proofs, and (ii) design a novel reconstruction procedure that is numerically more stable, and considerably faster than the known algorithms. Our analysis presents a comprehensive treatment of the halfspace depth of those measures whose depths attain finitely many different values. (C) 2021 Elsevier Inc. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-16097Y" target="_blank" >GJ19-16097Y: Geometrické aspekty matematické statistiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Multivariate Analysis
ISSN
0047-259X
e-ISSN
—
Svazek periodika
183
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
104727
Kód UT WoS článku
000633380200003
EID výsledku v databázi Scopus
2-s2.0-85100400916