Attuning Adaptation Rules via a Rule-Specific Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453430" target="_blank" >RIV/00216208:11320/22:10453430 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-19759-8_14" target="_blank" >https://doi.org/10.1007/978-3-031-19759-8_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-19759-8_14" target="_blank" >10.1007/978-3-031-19759-8_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Attuning Adaptation Rules via a Rule-Specific Neural Network
Popis výsledku v původním jazyce
There have been a number of approaches to employing neural networks (NNs) in self-adaptive systems; in many cases, generic NNs/deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by an NN, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic NNs to be trained. In this paper, we introduce the rule-specific Neural Network (rsNN) method that makes it possible to transform the guard of an adaptation rule into an rsNN, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved while the accuracy is preserved.
Název v anglickém jazyce
Attuning Adaptation Rules via a Rule-Specific Neural Network
Popis výsledku anglicky
There have been a number of approaches to employing neural networks (NNs) in self-adaptive systems; in many cases, generic NNs/deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by an NN, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic NNs to be trained. In this paper, we introduce the rule-specific Neural Network (rsNN) method that makes it possible to transform the guard of an adaptation rule into an rsNN, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved while the accuracy is preserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning 11th International Symposium, ISoLA 2022, Rhodes, Greece, October 22–30, 2022, Proceedings, Part III
ISBN
978-3-031-19758-1
ISSN
—
e-ISSN
1611-3349
Počet stran výsledku
16
Strana od-do
215-230
Název nakladatele
Springer
Místo vydání
Cham, Germany
Místo konání akce
Rhodes, Greece
Datum konání akce
22. 10. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—