Generating adaptation rule-specific neural network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474027" target="_blank" >RIV/00216208:11320/23:10474027 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b-~HZgiNzQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b-~HZgiNzQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10009-023-00725-y" target="_blank" >10.1007/s10009-023-00725-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating adaptation rule-specific neural network
Popis výsledku v původním jazyce
There have been a number of approaches to employ neural networks in self-adaptive systems; in many cases, generic neural networks and deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by a neural network, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic neural networks to be trained. In this paper, we introduce the rule-specific neural network method that makes it possible to transform the guard of an adaptation rule into a rule-specific neural network, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved whilst the accuracy is preserved. This text is an extended version of the paper presented at the ISOLA 2022 conference (Bureš et al. in Proceedings of ISOLA 2022, Rhodes, Greece, pp. 215-230, 2022).
Název v anglickém jazyce
Generating adaptation rule-specific neural network
Popis výsledku anglicky
There have been a number of approaches to employ neural networks in self-adaptive systems; in many cases, generic neural networks and deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by a neural network, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic neural networks to be trained. In this paper, we introduce the rule-specific neural network method that makes it possible to transform the guard of an adaptation rule into a rule-specific neural network, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved whilst the accuracy is preserved. This text is an extended version of the paper presented at the ISOLA 2022 conference (Bureš et al. in Proceedings of ISOLA 2022, Rhodes, Greece, pp. 215-230, 2022).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal on Software Tools for Technology Transfer
ISSN
1433-2779
e-ISSN
1433-2787
Svazek periodika
25
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
733-746
Kód UT WoS článku
001098098200001
EID výsledku v databázi Scopus
2-s2.0-85175982447