Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generating adaptation rule-specific neural network

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474027" target="_blank" >RIV/00216208:11320/23:10474027 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b-~HZgiNzQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=b-~HZgiNzQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10009-023-00725-y" target="_blank" >10.1007/s10009-023-00725-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generating adaptation rule-specific neural network

  • Popis výsledku v původním jazyce

    There have been a number of approaches to employ neural networks in self-adaptive systems; in many cases, generic neural networks and deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by a neural network, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic neural networks to be trained. In this paper, we introduce the rule-specific neural network method that makes it possible to transform the guard of an adaptation rule into a rule-specific neural network, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved whilst the accuracy is preserved. This text is an extended version of the paper presented at the ISOLA 2022 conference (Bureš et al. in Proceedings of ISOLA 2022, Rhodes, Greece, pp. 215-230, 2022).

  • Název v anglickém jazyce

    Generating adaptation rule-specific neural network

  • Popis výsledku anglicky

    There have been a number of approaches to employ neural networks in self-adaptive systems; in many cases, generic neural networks and deep learning are utilized for this purpose. When this approach is to be applied to improve an adaptation process initially driven by logical adaptation rules, the problem is that (1) these rules represent a significant and tested body of domain knowledge, which may be lost if they are replaced by a neural network, and (2) the learning process is inherently demanding given the black-box nature and the number of weights in generic neural networks to be trained. In this paper, we introduce the rule-specific neural network method that makes it possible to transform the guard of an adaptation rule into a rule-specific neural network, the composition of which is driven by the structure of the logical predicates in the guard. Our experiments confirmed that the black box effect is eliminated, the number of weights is significantly reduced, and much faster learning is achieved whilst the accuracy is preserved. This text is an extended version of the paper presented at the ISOLA 2022 conference (Bureš et al. in Proceedings of ISOLA 2022, Rhodes, Greece, pp. 215-230, 2022).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal on Software Tools for Technology Transfer

  • ISSN

    1433-2779

  • e-ISSN

    1433-2787

  • Svazek periodika

    25

  • Číslo periodika v rámci svazku

    neuveden

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    733-746

  • Kód UT WoS článku

    001098098200001

  • EID výsledku v databázi Scopus

    2-s2.0-85175982447