ML-DEECo: a Machine-Learning-Enabled Framework for Self-organizing Components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10453434" target="_blank" >RIV/00216208:11320/22:10453434 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACSOSC56246.2022.00033" target="_blank" >https://doi.org/10.1109/ACSOSC56246.2022.00033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACSOSC56246.2022.00033" target="_blank" >10.1109/ACSOSC56246.2022.00033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
ML-DEECo: a Machine-Learning-Enabled Framework for Self-organizing Components
Popis výsledku v původním jazyce
Machine learning has already proven itself in many scientific domains, most notably by improving classifications or value-predictions (regression). However, its wide deployment in the field of adaptive systems has yet to come. There are several reasons for this cautious adoption, such as the lack of sufficient data for training the models or reluctance to incorporate black-box models into the adaptation processes of existing systems. To gap these limitations, we are often required to perform detailed simulations to generate training data or verify the feasibility of adopting ML models in our systems. We present the ML-DEECo framework that should simplify the design of ML-enabled simulations, which removes repetitive code such as gathering specific data from the simulation, using these data to train models, and applying these models in the simulations as predictors. We also provide two case studies as an example and an evaluation of the usability of the proposed framework.
Název v anglickém jazyce
ML-DEECo: a Machine-Learning-Enabled Framework for Self-organizing Components
Popis výsledku anglicky
Machine learning has already proven itself in many scientific domains, most notably by improving classifications or value-predictions (regression). However, its wide deployment in the field of adaptive systems has yet to come. There are several reasons for this cautious adoption, such as the lack of sufficient data for training the models or reluctance to incorporate black-box models into the adaptation processes of existing systems. To gap these limitations, we are often required to perform detailed simulations to generate training data or verify the feasibility of adopting ML models in our systems. We present the ML-DEECo framework that should simplify the design of ML-enabled simulations, which removes repetitive code such as gathering specific data from the simulation, using these data to train models, and applying these models in the simulations as predictors. We also provide two case studies as an example and an evaluation of the usability of the proposed framework.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC20-24814J" target="_blank" >GC20-24814J: FluidTrust - popora důvěry pomocí dynamicky proměnlivého řízení přistupu k datům a zdrojům v systémech Průmyslu 4.0</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS COMPANION (ACSOS-C 2022)
ISBN
978-1-66545-142-0
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
66-69
Název nakladatele
IEEE COMPUTER SOC
Místo vydání
LOS ALAMITOS
Místo konání akce
virtual
Datum konání akce
19. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000886623600016