Online ML Self-adaptation in Face of Traps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474035" target="_blank" >RIV/00216208:11320/23:10474035 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1109/ACSOS58161.2023.00023" target="_blank" >https://doi.org/10.1109/ACSOS58161.2023.00023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACSOS58161.2023.00023" target="_blank" >10.1109/ACSOS58161.2023.00023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online ML Self-adaptation in Face of Traps
Popis výsledku v původním jazyce
Online machine learning (ML) is often used in selfadaptive systems to strengthen the adaptation mechanism and improve the system utility. Despite such benefits, applying online ML for self-adaptation can be challenging, and not many papers report its limitations. Recently, we experimented with applying online ML for self-adaptation of a smart farming scenario and we had faced several unexpected difficulties - traps - that, to our knowledge, are not discussed enough in the community. In this paper, we report our experience with these traps. Specifically, we discuss several traps that relate to the specification and online training of the ML-based estimators, their impact on self-adaptation, and the approach used to evaluate the estimators. Our overview of these traps provides a list of lessons learned, which can serve as guidance for other researchers and practitioners when applying online ML for self-adaptation.
Název v anglickém jazyce
Online ML Self-adaptation in Face of Traps
Popis výsledku anglicky
Online machine learning (ML) is often used in selfadaptive systems to strengthen the adaptation mechanism and improve the system utility. Despite such benefits, applying online ML for self-adaptation can be challenging, and not many papers report its limitations. Recently, we experimented with applying online ML for self-adaptation of a smart farming scenario and we had faced several unexpected difficulties - traps - that, to our knowledge, are not discussed enough in the community. In this paper, we report our experience with these traps. Specifically, we discuss several traps that relate to the specification and online training of the ML-based estimators, their impact on self-adaptation, and the approach used to evaluate the estimators. Our overview of these traps provides a list of lessons learned, which can serve as guidance for other researchers and practitioners when applying online ML for self-adaptation.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING AND SELF-ORGANIZING SYSTEMS, ACSOS
ISBN
979-8-3503-3744-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
57-66
Název nakladatele
IEEE COMPUTER SOC
Místo vydání
LOS ALAMITOS
Místo konání akce
Toronto
Datum konání akce
25. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001122711700007