Structural Properties of the First-Order Transduction Quasiorder
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454278" target="_blank" >RIV/00216208:11320/22:10454278 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4230/LIPIcs.CSL.2022.31" target="_blank" >https://doi.org/10.4230/LIPIcs.CSL.2022.31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CSL.2022.31" target="_blank" >10.4230/LIPIcs.CSL.2022.31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural Properties of the First-Order Transduction Quasiorder
Popis výsledku v původním jazyce
Logical transductions provide a very useful tool to encode classes of structures inside other classes of structures. In this paper we study first-order (FO) transductions and the quasiorder they induce on infinite classes of finite graphs. Surprisingly, this quasiorder is very complex, though shaped by the locality properties of first-order logic. This contrasts with the conjectured simplicity of the monadic second order (MSO) transduction quasiorder. We first establish a local normal form for FO transductions, which is of independent interest. Then we prove that the quotient partial order is a bounded distributive join-semilattice, and that the subposet of additive classes is also a bounded distributive join-semilattice. The FO transduction quasiorder has a great expressive power, and many well studied class properties can be defined using it. We apply these structural properties to prove, among other results, that FO transductions of the class of paths are exactly perturbations of classes with bounded bandwidth, that the local variants of monadic stability and monadic dependence are equivalent to their (standard) non-local versions, and that the classes with pathwidth at most k, for k >= 1 form a strict hierarchy in the FO transduction quasiorder.
Název v anglickém jazyce
Structural Properties of the First-Order Transduction Quasiorder
Popis výsledku anglicky
Logical transductions provide a very useful tool to encode classes of structures inside other classes of structures. In this paper we study first-order (FO) transductions and the quasiorder they induce on infinite classes of finite graphs. Surprisingly, this quasiorder is very complex, though shaped by the locality properties of first-order logic. This contrasts with the conjectured simplicity of the monadic second order (MSO) transduction quasiorder. We first establish a local normal form for FO transductions, which is of independent interest. Then we prove that the quotient partial order is a bounded distributive join-semilattice, and that the subposet of additive classes is also a bounded distributive join-semilattice. The FO transduction quasiorder has a great expressive power, and many well studied class properties can be defined using it. We apply these structural properties to prove, among other results, that FO transductions of the class of paths are exactly perturbations of classes with bounded bandwidth, that the local variants of monadic stability and monadic dependence are equivalent to their (standard) non-local versions, and that the classes with pathwidth at most k, for k >= 1 form a strict hierarchy in the FO transduction quasiorder.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Leibniz International Proceedings in Informatics, LIPIcs
ISBN
978-3-95977-218-1
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
16
Strana od-do
—
Název nakladatele
Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Místo vydání
Dagstuhl, Německo
Místo konání akce
Göttingen, Německo
Datum konání akce
14. 2. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—