GENERALISED ATIYAH'S THEORY OF PRINCIPAL CONNECTIONS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10454765" target="_blank" >RIV/00216208:11320/22:10454765 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZI6A6tQRku" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ZI6A6tQRku</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5817/AM2022-4-241" target="_blank" >10.5817/AM2022-4-241</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
GENERALISED ATIYAH'S THEORY OF PRINCIPAL CONNECTIONS
Popis výsledku v původním jazyce
This is a condensed report from the ongoing project aimed on higher principal connections and their relation with higher differential cohomology theories and generalised short exact sequences of L. algebroids. A historical stem for our project is a paper from sir M. Atiyah who observed a bijective correspondence between data for a horizontal distribution on a fibre bundle and a set of sections for a certain splitting short exact sequence of Lie algebroids, nowadays called the Atiyah sequence. In a meantime there was developed quite firm understanding of the category theory and in the last two decades also the higher category/top os theory. This conceptual framework allows us to examine principal connections and higher principal connections in a prism of differential cohomology theories. In this text we cover mostly the motivational part of the project which resides in searching for a common language of these two successful approaches to connections. From the reasons of conciseness and compactness we have not included computations and several lengthy proofs.
Název v anglickém jazyce
GENERALISED ATIYAH'S THEORY OF PRINCIPAL CONNECTIONS
Popis výsledku anglicky
This is a condensed report from the ongoing project aimed on higher principal connections and their relation with higher differential cohomology theories and generalised short exact sequences of L. algebroids. A historical stem for our project is a paper from sir M. Atiyah who observed a bijective correspondence between data for a horizontal distribution on a fibre bundle and a set of sections for a certain splitting short exact sequence of Lie algebroids, nowadays called the Atiyah sequence. In a meantime there was developed quite firm understanding of the category theory and in the last two decades also the higher category/top os theory. This conceptual framework allows us to examine principal connections and higher principal connections in a prism of differential cohomology theories. In this text we cover mostly the motivational part of the project which resides in searching for a common language of these two successful approaches to connections. From the reasons of conciseness and compactness we have not included computations and several lengthy proofs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Archivum Mathematicum [online]
ISSN
1212-5059
e-ISSN
—
Svazek periodika
58
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
16
Strana od-do
241-256
Kód UT WoS článku
000894246200004
EID výsledku v databázi Scopus
2-s2.0-85146904393