Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

THE SHORT-TERM RATIONAL LANCZOS METHOD AND APPLICATIONS

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10455385" target="_blank" >RIV/00216208:11320/22:10455385 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L7a8FDv6x8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=L7a8FDv6x8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1137/21M1403254" target="_blank" >10.1137/21M1403254</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    THE SHORT-TERM RATIONAL LANCZOS METHOD AND APPLICATIONS

  • Popis výsledku v původním jazyce

    Rational Krylov subspaces have become a reference tool in dimension reduction procedures for several application problems. When data matrices are symmetric, a short-term recurrence can be used to generate an associated orthonormal basis. In the past this procedure was abandoned because it requires twice the number of linear system solves per iteration compared with the classical long-term method. We propose an implementation that allows one to obtain the rational subspace reduced matrices at lower overall computational costs than proposed in the literature by also conveniently combining the two system solves. Several applications are discussed where the short-term recurrence feature can be exploited to avoid storing the whole orthonormal basis. We illustrate the advantages of the proposed procedure with several examples.

  • Název v anglickém jazyce

    THE SHORT-TERM RATIONAL LANCZOS METHOD AND APPLICATIONS

  • Popis výsledku anglicky

    Rational Krylov subspaces have become a reference tool in dimension reduction procedures for several application problems. When data matrices are symmetric, a short-term recurrence can be used to generate an associated orthonormal basis. In the past this procedure was abandoned because it requires twice the number of linear system solves per iteration compared with the classical long-term method. We propose an implementation that allows one to obtain the rational subspace reduced matrices at lower overall computational costs than proposed in the literature by also conveniently combining the two system solves. Several applications are discussed where the short-term recurrence feature can be exploited to avoid storing the whole orthonormal basis. We illustrate the advantages of the proposed procedure with several examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    SIAM Journal of Scientific Computing

  • ISSN

    1064-8275

  • e-ISSN

    1095-7197

  • Svazek periodika

    44

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    28

  • Strana od-do

    "A2843"-"A2870"

  • Kód UT WoS článku

    000922908600001

  • EID výsledku v databázi Scopus

    2-s2.0-85140381001