Real root finding for low rank linear matrices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F20%3A00340150" target="_blank" >RIV/68407700:21230/20:00340150 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00200-019-00396-w" target="_blank" >https://doi.org/10.1007/s00200-019-00396-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00200-019-00396-w" target="_blank" >10.1007/s00200-019-00396-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Real root finding for low rank linear matrices
Popis výsledku v původním jazyce
We consider mx s matrices (with m>= s) in a real affine subspace of dimension n. The problem of finding elements of low rank in such spaces finds many applications in information and systems theory, where low rank is synonymous of structure and parsimony. We design computer algebra algorithms, based on advanced methods for polynomial system solving, to solve this problem efficiently and exactly: the input are the rational coefficients of the matrices spanning the affine subspace as well as the expected maximum rank, and the output is a rational parametrization encoding a finite set of points that intersects each connected component of the low rank real algebraic set. The complexity of our algorithm is studied thoroughly. It is polynomial in (n+m(s-r)n). It improves on the state-of-the-art in computer algebra and effective real algebraic geometry. Moreover, computer experiments show the practical efficiency of our approach.
Název v anglickém jazyce
Real root finding for low rank linear matrices
Popis výsledku anglicky
We consider mx s matrices (with m>= s) in a real affine subspace of dimension n. The problem of finding elements of low rank in such spaces finds many applications in information and systems theory, where low rank is synonymous of structure and parsimony. We design computer algebra algorithms, based on advanced methods for polynomial system solving, to solve this problem efficiently and exactly: the input are the rational coefficients of the matrices spanning the affine subspace as well as the expected maximum rank, and the output is a rational parametrization encoding a finite set of points that intersects each connected component of the low rank real algebraic set. The complexity of our algorithm is studied thoroughly. It is polynomial in (n+m(s-r)n). It improves on the state-of-the-art in computer algebra and effective real algebraic geometry. Moreover, computer experiments show the practical efficiency of our approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applicable Algebra in Engineering, Communication and Computing
ISSN
0938-1279
e-ISSN
1432-0622
Svazek periodika
31
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
33
Strana od-do
101-133
Kód UT WoS článku
000518201000002
EID výsledku v databázi Scopus
2-s2.0-85069658735