On generating Sobolev orthogonal polynomials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10473004" target="_blank" >RIV/00216208:11320/23:10473004 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ca7c6saHCX" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ca7c6saHCX</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00211-023-01379-3" target="_blank" >10.1007/s00211-023-01379-3</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On generating Sobolev orthogonal polynomials
Popis výsledku v původním jazyce
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem.
Název v anglickém jazyce
On generating Sobolev orthogonal polynomials
Popis výsledku anglicky
Sobolev orthogonal polynomials are polynomials orthogonal with respect to a Sobolev inner product, an inner product in which derivatives of the polynomials appear. They satisfy a long recurrence relation that can be represented by a Hessenberg matrix. The problem of generating a finite sequence of Sobolev orthogonal polynomials can be reformulated as a matrix problem, that is, a Hessenberg inverse eigenvalue problem, where the Hessenberg matrix of recurrences is generated from certain known spectral information. Via the connection to Krylov subspaces we show that the required spectral information is the Jordan matrix containing the eigenvalues of the Hessenberg matrix and the normalized first entries of its eigenvectors. Using a suitable quadrature rule the Sobolev inner product is discretized and the resulting quadrature nodes form the Jordan matrix and associated quadrature weights are the first entries of the eigenvectors. We propose two new numerical procedures to compute Sobolev orthonormal polynomials based on solving the equivalent Hessenberg inverse eigenvalue problem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerische Mathematik
ISSN
0029-599X
e-ISSN
0945-3245
Svazek periodika
2023
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
415-443
Kód UT WoS článku
001288845800001
EID výsledku v databázi Scopus
2-s2.0-85175347798