Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10473005" target="_blank" >RIV/00216208:11320/24:10473005 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JOIDyYaMGH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JOIDyYaMGH</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.apnum.2023.07.009" target="_blank" >10.1016/j.apnum.2023.07.009</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product

  • Popis výsledku v původním jazyce

    Often, polynomials or rational functions, orthogonal for a particular inner product are desired. In practical numerical algorithms these polynomials are not constructed, but instead the associated recurrence relations are computed. Moreover, also typically the inner product is changed to a discrete inner product, which is the finite sum of weighted functions evaluated in specific nodes. For particular applications it is beneficial to have an efficient procedure to update the recurrence relations when adding or removing nodes from the inner product. The construction of the recurrence relations is equivalent to computing a structured matrix (polynomial) or pencil (rational) having prescribed spectral properties. Hence the solution of this problem is often referred to as solving an Inverse Eigenvalue Problem. In [34] we proposed updating techniques to add nodes to the inner product while efficiently updating the recurrences. To complete this study we present in this article manners to efficiently downdate the recurrences when removing nodes from the inner product. The link between removing nodes and the QR algorithm to deflate eigenvalues is exploited to develop efficient algorithms. We will base ourselves on the perfect shift strategy and develop algorithms, both for the polynomial case and the rational function setting. Numerical experiments validate our approach.

  • Název v anglickém jazyce

    Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product

  • Popis výsledku anglicky

    Often, polynomials or rational functions, orthogonal for a particular inner product are desired. In practical numerical algorithms these polynomials are not constructed, but instead the associated recurrence relations are computed. Moreover, also typically the inner product is changed to a discrete inner product, which is the finite sum of weighted functions evaluated in specific nodes. For particular applications it is beneficial to have an efficient procedure to update the recurrence relations when adding or removing nodes from the inner product. The construction of the recurrence relations is equivalent to computing a structured matrix (polynomial) or pencil (rational) having prescribed spectral properties. Hence the solution of this problem is often referred to as solving an Inverse Eigenvalue Problem. In [34] we proposed updating techniques to add nodes to the inner product while efficiently updating the recurrences. To complete this study we present in this article manners to efficiently downdate the recurrences when removing nodes from the inner product. The link between removing nodes and the QR algorithm to deflate eigenvalues is exploited to develop efficient algorithms. We will base ourselves on the perfect shift strategy and develop algorithms, both for the polynomial case and the rational function setting. Numerical experiments validate our approach.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Numerical Mathematics

  • ISSN

    0168-9274

  • e-ISSN

    1873-5460

  • Svazek periodika

    200

  • Číslo periodika v rámci svazku

    June 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    24

  • Strana od-do

    429-452

  • Kód UT WoS článku

    001238573400001

  • EID výsledku v databázi Scopus

    2-s2.0-85166060392