Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10473005" target="_blank" >RIV/00216208:11320/24:10473005 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JOIDyYaMGH" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=JOIDyYaMGH</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2023.07.009" target="_blank" >10.1016/j.apnum.2023.07.009</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product
Popis výsledku v původním jazyce
Often, polynomials or rational functions, orthogonal for a particular inner product are desired. In practical numerical algorithms these polynomials are not constructed, but instead the associated recurrence relations are computed. Moreover, also typically the inner product is changed to a discrete inner product, which is the finite sum of weighted functions evaluated in specific nodes. For particular applications it is beneficial to have an efficient procedure to update the recurrence relations when adding or removing nodes from the inner product. The construction of the recurrence relations is equivalent to computing a structured matrix (polynomial) or pencil (rational) having prescribed spectral properties. Hence the solution of this problem is often referred to as solving an Inverse Eigenvalue Problem. In [34] we proposed updating techniques to add nodes to the inner product while efficiently updating the recurrences. To complete this study we present in this article manners to efficiently downdate the recurrences when removing nodes from the inner product. The link between removing nodes and the QR algorithm to deflate eigenvalues is exploited to develop efficient algorithms. We will base ourselves on the perfect shift strategy and develop algorithms, both for the polynomial case and the rational function setting. Numerical experiments validate our approach.
Název v anglickém jazyce
Algorithms for modifying recurrence relations of orthogonal polynomial and rational functions when changing the discrete inner product
Popis výsledku anglicky
Often, polynomials or rational functions, orthogonal for a particular inner product are desired. In practical numerical algorithms these polynomials are not constructed, but instead the associated recurrence relations are computed. Moreover, also typically the inner product is changed to a discrete inner product, which is the finite sum of weighted functions evaluated in specific nodes. For particular applications it is beneficial to have an efficient procedure to update the recurrence relations when adding or removing nodes from the inner product. The construction of the recurrence relations is equivalent to computing a structured matrix (polynomial) or pencil (rational) having prescribed spectral properties. Hence the solution of this problem is often referred to as solving an Inverse Eigenvalue Problem. In [34] we proposed updating techniques to add nodes to the inner product while efficiently updating the recurrences. To complete this study we present in this article manners to efficiently downdate the recurrences when removing nodes from the inner product. The link between removing nodes and the QR algorithm to deflate eigenvalues is exploited to develop efficient algorithms. We will base ourselves on the perfect shift strategy and develop algorithms, both for the polynomial case and the rational function setting. Numerical experiments validate our approach.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
1873-5460
Svazek periodika
200
Číslo periodika v rámci svazku
June 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
24
Strana od-do
429-452
Kód UT WoS článku
001238573400001
EID výsledku v databázi Scopus
2-s2.0-85166060392