TIME-PERIODIC WEAK SOLUTIONS FOR AN INCOMPRESSIBLE NEWTONIAN FLUID INTERACTING WITH AN ELASTIC PLATEast
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456729" target="_blank" >RIV/00216208:11320/22:10456729 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mb47n2Glw9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Mb47n2Glw9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1458946" target="_blank" >10.1137/21M1458946</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
TIME-PERIODIC WEAK SOLUTIONS FOR AN INCOMPRESSIBLE NEWTONIAN FLUID INTERACTING WITH AN ELASTIC PLATEast
Popis výsledku v původním jazyce
Under the action of a time-periodic external force we prove the existence of at least one time-periodic weak solution for the interaction between a three-dimensional incompressible fluid, governed by the Navier-Stokes equation and a two-dimensional elastic plate. The challenge is that the Eulerian domain for the fluid changes in time and is a part of the solution. We introduce a two fixed-point methodology: First we construct a time-periodic solutions for a given variable time-periodic geometry. Then in a second step a (set-valued) fixed point is performed w.r.t. the geometry of the domain. The existence relies on newly developed a priori estimates applicable for both coupled and uncoupled variable geometries. Due to the expected weak regularity of the solutions such Eulerian estimates are unavoidable. Note in particular that only the fluid is assumed to be dissipative; the here-produced a priori estimates show that its possible to exploit the dissipative effects of the fluid also for the solid deformation. The existence of time-periodic solutions for a given geometry is valid for arbitrary large data. The existence of periodic coupled solutions to the fluid-structure interaction is valid for all data that exclude a self-intersection a priori.
Název v anglickém jazyce
TIME-PERIODIC WEAK SOLUTIONS FOR AN INCOMPRESSIBLE NEWTONIAN FLUID INTERACTING WITH AN ELASTIC PLATEast
Popis výsledku anglicky
Under the action of a time-periodic external force we prove the existence of at least one time-periodic weak solution for the interaction between a three-dimensional incompressible fluid, governed by the Navier-Stokes equation and a two-dimensional elastic plate. The challenge is that the Eulerian domain for the fluid changes in time and is a part of the solution. We introduce a two fixed-point methodology: First we construct a time-periodic solutions for a given variable time-periodic geometry. Then in a second step a (set-valued) fixed point is performed w.r.t. the geometry of the domain. The existence relies on newly developed a priori estimates applicable for both coupled and uncoupled variable geometries. Due to the expected weak regularity of the solutions such Eulerian estimates are unavoidable. Note in particular that only the fluid is assumed to be dissipative; the here-produced a priori estimates show that its possible to exploit the dissipative effects of the fluid also for the solid deformation. The existence of time-periodic solutions for a given geometry is valid for arbitrary large data. The existence of periodic coupled solutions to the fluid-structure interaction is valid for all data that exclude a self-intersection a priori.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Svazek periodika
54
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
4139-4162
Kód UT WoS článku
000841107900003
EID výsledku v databázi Scopus
2-s2.0-85135208292