WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATIONast
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10456728" target="_blank" >RIV/00216208:11320/22:10456728 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4mQseUupN9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4mQseUupN9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/21M1443509" target="_blank" >10.1137/21M1443509</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATIONast
Popis výsledku v původním jazyce
We show weak-strong uniqueness and stability results for the motion of a two- or three-dimensional fluid governed by the Navier-Stokes equation interacting with a flexible, elastic plate of Koiter type. The plate is situated at the top of the fluid and as such determines the variable part of a time changing domain (that is hence a part of the solution) containing the fluid. The uniqueness result is a consequence of a stability estimate where the difference of two solutions is estimated by the distance of the initial values and outer forces. For that we introduce a methodology that overcomes the problem that the two (variable in time) domains of the fluid velocities and pressures are not the same. The estimate holds under the assumption that one of the two weak solutions possesses some additional higher regularity. The additional regularity is exclusively requested for the velocity of one of the solutions resembling the celebrated Ladyzhenskaya-Prodi-Serrin conditions in the given framework.
Název v anglickém jazyce
WEAK-STRONG UNIQUENESS FOR AN ELASTIC PLATE INTERACTING WITH THE NAVIER-STOKES EQUATIONast
Popis výsledku anglicky
We show weak-strong uniqueness and stability results for the motion of a two- or three-dimensional fluid governed by the Navier-Stokes equation interacting with a flexible, elastic plate of Koiter type. The plate is situated at the top of the fluid and as such determines the variable part of a time changing domain (that is hence a part of the solution) containing the fluid. The uniqueness result is a consequence of a stability estimate where the difference of two solutions is estimated by the distance of the initial values and outer forces. For that we introduce a methodology that overcomes the problem that the two (variable in time) domains of the fluid velocities and pressures are not the same. The estimate holds under the assumption that one of the two weak solutions possesses some additional higher regularity. The additional regularity is exclusively requested for the velocity of one of the solutions resembling the celebrated Ladyzhenskaya-Prodi-Serrin conditions in the given framework.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Mathematical Analysis
ISSN
0036-1410
e-ISSN
1095-7154
Svazek periodika
54
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
4104-4138
Kód UT WoS článku
000841107900002
EID výsledku v databázi Scopus
2-s2.0-85135226033