Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542434" target="_blank" >RIV/67985840:_____/21:00542434 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1088/1361-6544/abe696" target="_blank" >https://doi.org/10.1088/1361-6544/abe696</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6544/abe696" target="_blank" >10.1088/1361-6544/abe696</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation

  • Popis výsledku v původním jazyce

    In this article, we consider a fluid-structure interaction system where the fluid is viscous and compressible and where the structure is a part of the boundary of the fluid domain and is deformable. The fluid is governed by the barotropic compressible Navier-Stokes system, whereas the structure displacement is described by a wave equation. We show that the corresponding coupled system admits a unique, strong solution for an initial fluid density and an initial fluid velocity in H3 and for an initial deformation and an initial deformation velocity in H4 and H3 respectively. The reference configuration for the fluid domain is a rectangular cuboid with the elastic structure being the top face.We use a modified Lagrangian change of variables to transform the moving fluid domain into the rectangular cuboid and then analyze the corresponding linear system coupling a transport equation (for the density), a heat-type equation, and a wave equation. The corresponding results for this linear system and estimations of the coefficients coming from the change of variables allow us to perform a fixed point argument and to prove the existence and uniqueness of strong solutions for the nonlinear system, locally in time.

  • Název v anglickém jazyce

    Existence of strong solutions for a system of interaction between a compressible viscous fluid and a wave equation

  • Popis výsledku anglicky

    In this article, we consider a fluid-structure interaction system where the fluid is viscous and compressible and where the structure is a part of the boundary of the fluid domain and is deformable. The fluid is governed by the barotropic compressible Navier-Stokes system, whereas the structure displacement is described by a wave equation. We show that the corresponding coupled system admits a unique, strong solution for an initial fluid density and an initial fluid velocity in H3 and for an initial deformation and an initial deformation velocity in H4 and H3 respectively. The reference configuration for the fluid domain is a rectangular cuboid with the elastic structure being the top face.We use a modified Lagrangian change of variables to transform the moving fluid domain into the rectangular cuboid and then analyze the corresponding linear system coupling a transport equation (for the density), a heat-type equation, and a wave equation. The corresponding results for this linear system and estimations of the coefficients coming from the change of variables allow us to perform a fixed point argument and to prove the existence and uniqueness of strong solutions for the nonlinear system, locally in time.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinearity

  • ISSN

    0951-7715

  • e-ISSN

    1361-6544

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    29

  • Strana od-do

    2659-2687

  • Kód UT WoS článku

    000672932700001

  • EID výsledku v databázi Scopus

    2-s2.0-85105086128