Weak-strong uniqueness for the compressible fluid-rigid body interaction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521522" target="_blank" >RIV/67985840:_____/20:00521522 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jde.2019.10.038" target="_blank" >https://doi.org/10.1016/j.jde.2019.10.038</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2019.10.038" target="_blank" >10.1016/j.jde.2019.10.038</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Weak-strong uniqueness for the compressible fluid-rigid body interaction
Popis výsledku v původním jazyce
In this work we study the coupled system of partial and ordinary differential equations describing the interaction between a compressible isentropic viscous fluid and a rigid body moving freely inside the fluid. In particular the position and velocity of the rigid body in the fluid are unknown and the motion of the rigid body is driven by the normal stress forces of the fluid acting on the boundary of the body. We prove that the strong solution, which is known to exist under certain smallness assumptions, is unique in the class of weak solutions to the problem. The proof relies on a correct definition of the relative energy, to use this tool we then have to introduce a change of coordinates to transform the strong solution to the domain of the weak solution in order to use it as a test function in the relative energy inequality. Estimating all arising terms we prove that the weak solution has to coincide with the transformed strong solution and finally that the transformation has to be in fact an identity.
Název v anglickém jazyce
Weak-strong uniqueness for the compressible fluid-rigid body interaction
Popis výsledku anglicky
In this work we study the coupled system of partial and ordinary differential equations describing the interaction between a compressible isentropic viscous fluid and a rigid body moving freely inside the fluid. In particular the position and velocity of the rigid body in the fluid are unknown and the motion of the rigid body is driven by the normal stress forces of the fluid acting on the boundary of the body. We prove that the strong solution, which is known to exist under certain smallness assumptions, is unique in the class of weak solutions to the problem. The proof relies on a correct definition of the relative energy, to use this tool we then have to introduce a change of coordinates to transform the strong solution to the domain of the weak solution in order to use it as a test function in the relative energy inequality. Estimating all arising terms we prove that the weak solution has to coincide with the transformed strong solution and finally that the transformation has to be in fact an identity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
—
Svazek periodika
268
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
30
Strana od-do
4756-4785
Kód UT WoS článku
000510863100023
EID výsledku v databázi Scopus
2-s2.0-85075398778