Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weak-strong uniqueness for the compressible fluid-rigid body interaction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00521522" target="_blank" >RIV/67985840:_____/20:00521522 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jde.2019.10.038" target="_blank" >https://doi.org/10.1016/j.jde.2019.10.038</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2019.10.038" target="_blank" >10.1016/j.jde.2019.10.038</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weak-strong uniqueness for the compressible fluid-rigid body interaction

  • Popis výsledku v původním jazyce

    In this work we study the coupled system of partial and ordinary differential equations describing the interaction between a compressible isentropic viscous fluid and a rigid body moving freely inside the fluid. In particular the position and velocity of the rigid body in the fluid are unknown and the motion of the rigid body is driven by the normal stress forces of the fluid acting on the boundary of the body. We prove that the strong solution, which is known to exist under certain smallness assumptions, is unique in the class of weak solutions to the problem. The proof relies on a correct definition of the relative energy, to use this tool we then have to introduce a change of coordinates to transform the strong solution to the domain of the weak solution in order to use it as a test function in the relative energy inequality. Estimating all arising terms we prove that the weak solution has to coincide with the transformed strong solution and finally that the transformation has to be in fact an identity.

  • Název v anglickém jazyce

    Weak-strong uniqueness for the compressible fluid-rigid body interaction

  • Popis výsledku anglicky

    In this work we study the coupled system of partial and ordinary differential equations describing the interaction between a compressible isentropic viscous fluid and a rigid body moving freely inside the fluid. In particular the position and velocity of the rigid body in the fluid are unknown and the motion of the rigid body is driven by the normal stress forces of the fluid acting on the boundary of the body. We prove that the strong solution, which is known to exist under certain smallness assumptions, is unique in the class of weak solutions to the problem. The proof relies on a correct definition of the relative energy, to use this tool we then have to introduce a change of coordinates to transform the strong solution to the domain of the weak solution in order to use it as a test function in the relative energy inequality. Estimating all arising terms we prove that the weak solution has to coincide with the transformed strong solution and finally that the transformation has to be in fact an identity.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04243S" target="_blank" >GA19-04243S: Parciální diferenciální rovnice v mechanice a termodynamice tekutin</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

  • Svazek periodika

    268

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    4756-4785

  • Kód UT WoS článku

    000510863100023

  • EID výsledku v databázi Scopus

    2-s2.0-85075398778