Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10475836" target="_blank" >RIV/00216208:11320/22:10475836 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=k.9E6Srl8x" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=k.9E6Srl8x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/AIHPC/33" target="_blank" >10.4171/AIHPC/33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
Popis výsledku v původním jazyce
We study the unsteady incompressible Navier-Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of non-linear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (with respect to terms of highest order). The estimates are obtained by introducing new analytical tools that allow dissipative effects of the fluid to be exploited for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation proce-dure; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin-Lions-type compactness result suitable for fluid-structure interactions.
Název v anglickém jazyce
Existence and regularity of weak solutions for a fluid interacting with a non-linear shell in three dimensions
Popis výsledku anglicky
We study the unsteady incompressible Navier-Stokes equations in three dimensions interacting with a non-linear flexible shell of Koiter type. This leads to a coupled system of non-linear PDEs where the moving part of the boundary is an unknown of the problem. The known existence theory for weak solutions is extended to non-linear Koiter shell models. We introduce a priori estimates that reveal higher regularity of the shell displacement beyond energy estimates. These are essential for non-linear Koiter shell models, since such shell models are non-convex (with respect to terms of highest order). The estimates are obtained by introducing new analytical tools that allow dissipative effects of the fluid to be exploited for the (non-dissipative) solid. The regularity result depends on the geometric constitution alone and is independent of the approximation proce-dure; hence it holds for arbitrary weak solutions. The developed tools are further used to introduce a generalized Aubin-Lions-type compactness result suitable for fluid-structure interactions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales de l'Institut Henri Poincaré C, Analyse Non Linéaire
ISSN
0294-1449
e-ISSN
1873-1430
Svazek periodika
39
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
44
Strana od-do
1369-1412
Kód UT WoS článku
000927008900003
EID výsledku v databázi Scopus
2-s2.0-85147381275