Obstacles with Synthesizing Training Data for OMR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A10457043" target="_blank" >RIV/00216208:11320/22:10457043 - isvavai.cz</a>
Výsledek na webu
<a href="https://arxiv.org/abs/2211.13285" target="_blank" >https://arxiv.org/abs/2211.13285</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Obstacles with Synthesizing Training Data for OMR
Popis výsledku v původním jazyce
Training with synthetic data has been successfully used in many domains of deep learning where authentic training data is scarce. Optical Music Recognition (OMR), especially recognition of handwritten music, greatly benefits from training on synthetic data too. In this paper, we explore the challenges of synthesizing images of sheets of music for training deep learning OMR models and compare such synthesis to the process of digital music engraving. We also contrast that with the architecture of our synthesizer prototype, which was used to achieve state-ofthe-art results by training on the synthetic images only.
Název v anglickém jazyce
Obstacles with Synthesizing Training Data for OMR
Popis výsledku anglicky
Training with synthetic data has been successfully used in many domains of deep learning where authentic training data is scarce. Optical Music Recognition (OMR), especially recognition of handwritten music, greatly benefits from training on synthetic data too. In this paper, we explore the challenges of synthesizing images of sheets of music for training deep learning OMR models and compare such synthesis to the process of digital music engraving. We also contrast that with the architecture of our synthesizer prototype, which was used to achieve state-ofthe-art results by training on the synthetic images only.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26934X" target="_blank" >GX19-26934X: Neuronové reprezentace v multimodálním a mnohojazyčném modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů