Domain Adaptation in Neural Machine Translation using a Qualia-Enriched FrameNet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A2CAQ7NWX" target="_blank" >RIV/00216208:11320/22:2CAQ7NWX - isvavai.cz</a>
Výsledek na webu
<a href="http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.1.pdf" target="_blank" >http://www.lrec-conf.org/proceedings/lrec2022/pdf/2022.lrec-1.1.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Domain Adaptation in Neural Machine Translation using a Qualia-Enriched FrameNet
Popis výsledku v původním jazyce
In this paper we present Scylla, a methodology for domain adaptation of Neural Machine Translation (NMT) systems that make use of a multilingual FrameNet enriched with qualia relations as an external knowledge base. Domain adaptation techniques used in NMT usually require fine-tuning and in-domain training data, which may pose difficulties for those working with lesser-resourced languages and may also lead to performance decay of the NMT system for out-of-domain sentences. Scylla does not require fine-tuning of the NMT model, avoiding the risk of model over-fitting and consequent decrease in performance for out-of-domain translations. Two versions of Scylla are presented: one using the source sentence as input, and another one using the target sentence. We evaluate Scylla in comparison to a state-of-the-art commercial NMT system in an experiment in which 50 sentences from the Sports domain are translated from Brazilian Portuguese to English. The two versions of Scylla significantly outperform the baseline commercial system in HTER.
Název v anglickém jazyce
Domain Adaptation in Neural Machine Translation using a Qualia-Enriched FrameNet
Popis výsledku anglicky
In this paper we present Scylla, a methodology for domain adaptation of Neural Machine Translation (NMT) systems that make use of a multilingual FrameNet enriched with qualia relations as an external knowledge base. Domain adaptation techniques used in NMT usually require fine-tuning and in-domain training data, which may pose difficulties for those working with lesser-resourced languages and may also lead to performance decay of the NMT system for out-of-domain sentences. Scylla does not require fine-tuning of the NMT model, avoiding the risk of model over-fitting and consequent decrease in performance for out-of-domain translations. Two versions of Scylla are presented: one using the source sentence as input, and another one using the target sentence. We evaluate Scylla in comparison to a state-of-the-art commercial NMT system in an experiment in which 50 sentences from the Sports domain are translated from Brazilian Portuguese to English. The two versions of Scylla significantly outperform the baseline commercial system in HTER.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 13th Conference on Language Resources and Evaluation (LREC 2022)
ISBN
979-10-95546-72-6
ISSN
—
e-ISSN
—
Počet stran výsledku
12
Strana od-do
1-12
Název nakladatele
European Language Resources Association (ELRA)
Místo vydání
—
Místo konání akce
Marseille, France
Datum konání akce
1. 1. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—