Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data-driven Crosslinguistic Syntactic Transfer in Second Language Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A2GD7DR33" target="_blank" >RIV/00216208:11320/22:2GD7DR33 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://escholarship.org/uc/item/86j2x3t2" target="_blank" >https://escholarship.org/uc/item/86j2x3t2</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data-driven Crosslinguistic Syntactic Transfer in Second Language Learning

  • Popis výsledku v původním jazyce

    Second-language (L2) learning is characterized by both positive and negative transfer from the first language (L1). However, psycholinguistic studies focus on a few syntactic phenomena and L1-L2 pairs at a time, resulting in an incomplete picture. We apply machine learning to seven learner corpora in English and Spanish with 39 language pairs, showing that statistical models combined with simple $n$-grams of part-of-speech tags and syntactic dependency relations achieve good performance in recovering the L1, indicating structural transfer from L1 to L2. Further machine learning using a rich hand-curated linguistic feature set allowed us to identify aspects of L2 linguistic structure particularly influenced by L1 (verbal morphology, average dependency tree parse depth, and headedness of clausal structures) as well as those with minimal influence (distributions of dependency relations, basic word orders, or non-projective dependencies).

  • Název v anglickém jazyce

    Data-driven Crosslinguistic Syntactic Transfer in Second Language Learning

  • Popis výsledku anglicky

    Second-language (L2) learning is characterized by both positive and negative transfer from the first language (L1). However, psycholinguistic studies focus on a few syntactic phenomena and L1-L2 pairs at a time, resulting in an incomplete picture. We apply machine learning to seven learner corpora in English and Spanish with 39 language pairs, showing that statistical models combined with simple $n$-grams of part-of-speech tags and syntactic dependency relations achieve good performance in recovering the L1, indicating structural transfer from L1 to L2. Further machine learning using a rich hand-curated linguistic feature set allowed us to identify aspects of L2 linguistic structure particularly influenced by L1 (verbal morphology, average dependency tree parse depth, and headedness of clausal structures) as well as those with minimal influence (distributions of dependency relations, basic word orders, or non-projective dependencies).

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů