Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A49KCB4RR" target="_blank" >RIV/00216208:11320/22:49KCB4RR - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/18/3232" target="_blank" >https://www.mdpi.com/2227-7390/10/18/3232</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10183232" target="_blank" >10.3390/math10183232</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis
Popis výsledku v původním jazyce
This paper describes two different approaches to sentiment analysis. The first is a form of symbolic approach that exploits a sentiment lexicon together with a set of shifter patterns and rules. The sentiment lexicon includes single words (unigrams) and is developed automatically by exploiting labeled examples. The shifter patterns include intensification, attenuation/downtoning and inversion/reversal and are developed manually. The second approach exploits a deep neural network, which uses a pre-trained language model. Both approaches were applied to texts on economics and finance domains from newspapers in European Portuguese. We show that the symbolic approach achieves virtually the same performance as the deep neural network. In addition, the symbolic approach provides understandable explanations, and the acquired knowledge can be communicated to others. We release the shifter patterns to motivate future research in this direction.
Název v anglickém jazyce
Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis
Popis výsledku anglicky
This paper describes two different approaches to sentiment analysis. The first is a form of symbolic approach that exploits a sentiment lexicon together with a set of shifter patterns and rules. The sentiment lexicon includes single words (unigrams) and is developed automatically by exploiting labeled examples. The shifter patterns include intensification, attenuation/downtoning and inversion/reversal and are developed manually. The second approach exploits a deep neural network, which uses a pre-trained language model. Both approaches were applied to texts on economics and finance domains from newspapers in European Portuguese. We show that the symbolic approach achieves virtually the same performance as the deep neural network. In addition, the symbolic approach provides understandable explanations, and the acquired knowledge can be communicated to others. We release the shifter patterns to motivate future research in this direction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics [online]
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
10
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
000857610000001
EID výsledku v databázi Scopus
2-s2.0-85138638378