Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3A49KCB4RR" target="_blank" >RIV/00216208:11320/22:49KCB4RR - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/10/18/3232" target="_blank" >https://www.mdpi.com/2227-7390/10/18/3232</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math10183232" target="_blank" >10.3390/math10183232</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis

  • Popis výsledku v původním jazyce

    This paper describes two different approaches to sentiment analysis. The first is a form of symbolic approach that exploits a sentiment lexicon together with a set of shifter patterns and rules. The sentiment lexicon includes single words (unigrams) and is developed automatically by exploiting labeled examples. The shifter patterns include intensification, attenuation/downtoning and inversion/reversal and are developed manually. The second approach exploits a deep neural network, which uses a pre-trained language model. Both approaches were applied to texts on economics and finance domains from newspapers in European Portuguese. We show that the symbolic approach achieves virtually the same performance as the deep neural network. In addition, the symbolic approach provides understandable explanations, and the acquired knowledge can be communicated to others. We release the shifter patterns to motivate future research in this direction.

  • Název v anglickém jazyce

    Semi-Automatic Approaches for Exploiting Shifter Patterns in Domain-Specific Sentiment Analysis

  • Popis výsledku anglicky

    This paper describes two different approaches to sentiment analysis. The first is a form of symbolic approach that exploits a sentiment lexicon together with a set of shifter patterns and rules. The sentiment lexicon includes single words (unigrams) and is developed automatically by exploiting labeled examples. The shifter patterns include intensification, attenuation/downtoning and inversion/reversal and are developed manually. The second approach exploits a deep neural network, which uses a pre-trained language model. Both approaches were applied to texts on economics and finance domains from newspapers in European Portuguese. We show that the symbolic approach achieves virtually the same performance as the deep neural network. In addition, the symbolic approach provides understandable explanations, and the acquired knowledge can be communicated to others. We release the shifter patterns to motivate future research in this direction.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics [online]

  • ISSN

    2227-7390

  • e-ISSN

    2227-7390

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    18

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    000857610000001

  • EID výsledku v databázi Scopus

    2-s2.0-85138638378