Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Visualization-based improvement of neural machine translation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AHXGZLLZY" target="_blank" >RIV/00216208:11320/22:HXGZLLZY - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0097849321002594" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0097849321002594</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cag.2021.12.003" target="_blank" >10.1016/j.cag.2021.12.003</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Visualization-based improvement of neural machine translation

  • Popis výsledku v původním jazyce

    We introduce a novel visual-interactive approach for analyzing, understanding, and correcting neural machine translation. Our system supports users in automatically translating documents using neural machine translation and identifying and correcting possible erroneous translations. User corrections can then be used to fine-tune the neural machine translation model and automatically improve the whole document. While translation results of neural machine translation can be impressive, there are still many challenges such as over- and under-translation, domain-specific terminology, and handling long sentences, making it necessary for users to verify translation results. Our system aims at supporting users in this task. Our visual analytics approach combines several visualization techniques in an interactive system. A parallel coordinates plot with multiple metrics related to translation quality can be used to find, filter, and select translations that might contain errors. An interactive beam search visualization and graph- or matrix-based visualizations for attention weights can be used for post-editing and understanding machine-generated translations. The machine translation model is updated from user corrections to improve the translation quality of the whole document. We designed our approach for an LSTM-based translation model and extended it to also include the Transformer architecture. We show for representative examples possible mistranslations and how to use our system to deal with them. A user study revealed that many participants favor such a system over manual text-based translation, especially for translating large documents. Furthermore, we performed quantitative computer-based experiments that show that our system can be used to improve translation quality and reduce post-editing efforts for domain-specific documents.

  • Název v anglickém jazyce

    Visualization-based improvement of neural machine translation

  • Popis výsledku anglicky

    We introduce a novel visual-interactive approach for analyzing, understanding, and correcting neural machine translation. Our system supports users in automatically translating documents using neural machine translation and identifying and correcting possible erroneous translations. User corrections can then be used to fine-tune the neural machine translation model and automatically improve the whole document. While translation results of neural machine translation can be impressive, there are still many challenges such as over- and under-translation, domain-specific terminology, and handling long sentences, making it necessary for users to verify translation results. Our system aims at supporting users in this task. Our visual analytics approach combines several visualization techniques in an interactive system. A parallel coordinates plot with multiple metrics related to translation quality can be used to find, filter, and select translations that might contain errors. An interactive beam search visualization and graph- or matrix-based visualizations for attention weights can be used for post-editing and understanding machine-generated translations. The machine translation model is updated from user corrections to improve the translation quality of the whole document. We designed our approach for an LSTM-based translation model and extended it to also include the Transformer architecture. We show for representative examples possible mistranslations and how to use our system to deal with them. A user study revealed that many participants favor such a system over manual text-based translation, especially for translating large documents. Furthermore, we performed quantitative computer-based experiments that show that our system can be used to improve translation quality and reduce post-editing efforts for domain-specific documents.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Graphics

  • ISSN

    0097-8493

  • e-ISSN

    1873-7684

  • Svazek periodika

    103

  • Číslo periodika v rámci svazku

    2022-4-1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    45-60

  • Kód UT WoS článku

    000797510600003

  • EID výsledku v databázi Scopus

    2-s2.0-85123427775