Decoding customer experiences in rail transport service: application of hybrid sentiment analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F22%3AJWQZE4SZ" target="_blank" >RIV/00216208:11320/22:JWQZE4SZ - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s12469-021-00289-7" target="_blank" >https://doi.org/10.1007/s12469-021-00289-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s12469-021-00289-7" target="_blank" >10.1007/s12469-021-00289-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Decoding customer experiences in rail transport service: application of hybrid sentiment analysis
Popis výsledku v původním jazyce
The paper aims to enhance customers’ satisfaction levels by identifying improvements in the service quality of the rail transport industry in developing countries such as India. A multi-algorithmic combination of a LEXICON analysis and a Naïve Bayes machine learning hybrid approach to sentiment analysis is performed for identifying passengers’ opinions on the services provided by Indian Railways. Inputs were gathered from the Twitter microblogging platform. Data analysis reveals that the ticket reservation and refund process, delay in operational activities, and abhorrent behavior of staff were crucial areas in which Indian Railway service needs improvement. The study imparts a conceptual methodology/process for implementing a hybrid multi-algorithmic LEXICON and machine learning techniques in sentiment analysis. The model proves to take less time to process, train, and test data than stand-alone LEXICON or machine learning-based approaches. Managers, practitioners, and researchers may use this approach to understand customer experience especially in rail transportation but also across hospitality sectors such as hotels, restaurants, education, and hospitals.
Název v anglickém jazyce
Decoding customer experiences in rail transport service: application of hybrid sentiment analysis
Popis výsledku anglicky
The paper aims to enhance customers’ satisfaction levels by identifying improvements in the service quality of the rail transport industry in developing countries such as India. A multi-algorithmic combination of a LEXICON analysis and a Naïve Bayes machine learning hybrid approach to sentiment analysis is performed for identifying passengers’ opinions on the services provided by Indian Railways. Inputs were gathered from the Twitter microblogging platform. Data analysis reveals that the ticket reservation and refund process, delay in operational activities, and abhorrent behavior of staff were crucial areas in which Indian Railway service needs improvement. The study imparts a conceptual methodology/process for implementing a hybrid multi-algorithmic LEXICON and machine learning techniques in sentiment analysis. The model proves to take less time to process, train, and test data than stand-alone LEXICON or machine learning-based approaches. Managers, practitioners, and researchers may use this approach to understand customer experience especially in rail transportation but also across hospitality sectors such as hotels, restaurants, education, and hospitals.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Public Transport
ISSN
1613-7159
e-ISSN
1866-749X
Svazek periodika
—
Číslo periodika v rámci svazku
2022-2-22
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
30
Strana od-do
1-30
Kód UT WoS článku
000759310700001
EID výsledku v databázi Scopus
2-s2.0-85125072594