AI Assistants: A Framework for Semi-Automated Data Wrangling
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10456128" target="_blank" >RIV/00216208:11320/23:10456128 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VbOKecDEWf" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VbOKecDEWf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TKDE.2022.3222538" target="_blank" >10.1109/TKDE.2022.3222538</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
AI Assistants: A Framework for Semi-Automated Data Wrangling
Popis výsledku v původním jazyce
Data wrangling tasks such as obtaining and linking data from various sources, transforming data formats, and correcting erroneous records, can constitute up to 80% of typical data engineering work. Despite the rise of machine learning and artificial intelligence, data wrangling remains a tedious and manual task. We introduce AI assistants , a class of semi-automatic interactive tools to streamline data wrangling. An AI assistant guides the analyst through a specific data wrangling task by recommending a suitable data transformation that respects the constraints obtained through interaction with the analyst.We formally define the structure of AI assistants and describe how existing tools that treat data cleaning as an optimization problem fit the definition. We implement AI assistants for four common data wrangling tasks and make AI assistants easily accessible to data analysts in an open-source notebook environment for data science, by leveraging the common structure they follow. We evaluate our AI assistants both quantitatively and qualitatively through three example scenarios. We show that the unified and interactive design makes it easy to perform tasks that would be difficult to do manually or with a fully automatic tool.
Název v anglickém jazyce
AI Assistants: A Framework for Semi-Automated Data Wrangling
Popis výsledku anglicky
Data wrangling tasks such as obtaining and linking data from various sources, transforming data formats, and correcting erroneous records, can constitute up to 80% of typical data engineering work. Despite the rise of machine learning and artificial intelligence, data wrangling remains a tedious and manual task. We introduce AI assistants , a class of semi-automatic interactive tools to streamline data wrangling. An AI assistant guides the analyst through a specific data wrangling task by recommending a suitable data transformation that respects the constraints obtained through interaction with the analyst.We formally define the structure of AI assistants and describe how existing tools that treat data cleaning as an optimization problem fit the definition. We implement AI assistants for four common data wrangling tasks and make AI assistants easily accessible to data analysts in an open-source notebook environment for data science, by leveraging the common structure they follow. We evaluate our AI assistants both quantitatively and qualitatively through three example scenarios. We show that the unified and interactive design makes it easy to perform tasks that would be difficult to do manually or with a fully automatic tool.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Knowledge and Data Engineering
ISSN
1041-4347
e-ISSN
—
Svazek periodika
35
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
9295-9306
Kód UT WoS článku
001045704800044
EID výsledku v databázi Scopus
2-s2.0-85142852626