1-convex extensions of incomplete cooperative games and the average value
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10468920" target="_blank" >RIV/00216208:11320/23:10468920 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5mbnLLeirx" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=5mbnLLeirx</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11238-023-09946-8" target="_blank" >10.1007/s11238-023-09946-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
1-convex extensions of incomplete cooperative games and the average value
Popis výsledku v původním jazyce
The model of incomplete cooperative games incorporates uncer7tainty into the classical model of cooperative games by considering a partial8 characteristic function. Thus the values for some of the coalitions are not9 known. The main focus of this paper is 1-convexity under this framework.10 We are interested in two heavily intertwined questions. First, given an11 incomplete game, how can we ll in the missing values to obtain a complete12 1-convex game? Second, how to determine in a rational, fair, and ecient way13 the payos of players based only on the known values of coalitions?14 We illustrate the analysis with two classes of incomplete games - minimal15 incomplete games and incomplete games with dened upper vector. To answer16 the rst question, for both classes, we provide a description of the set of 1-17 convex extensions in terms of its extreme points and extreme rays. Based on18 the description of the set of 1-convex extensions, we introduce generalisations19 of three solution concepts for complete games, namely the -value, the Shapley20 value and the nucleolus. For minimal incomplete games, we show that all21 of the generalised values coincide. We call it the average value and provide22 dierent axiomatisations. For incomplete games with dened upper vector, we23 show that the generalised values do not coincide in general. This highlights24 the importance and also the diculty of considering more general classes of25 incomplete games.
Název v anglickém jazyce
1-convex extensions of incomplete cooperative games and the average value
Popis výsledku anglicky
The model of incomplete cooperative games incorporates uncer7tainty into the classical model of cooperative games by considering a partial8 characteristic function. Thus the values for some of the coalitions are not9 known. The main focus of this paper is 1-convexity under this framework.10 We are interested in two heavily intertwined questions. First, given an11 incomplete game, how can we ll in the missing values to obtain a complete12 1-convex game? Second, how to determine in a rational, fair, and ecient way13 the payos of players based only on the known values of coalitions?14 We illustrate the analysis with two classes of incomplete games - minimal15 incomplete games and incomplete games with dened upper vector. To answer16 the rst question, for both classes, we provide a description of the set of 1-17 convex extensions in terms of its extreme points and extreme rays. Based on18 the description of the set of 1-convex extensions, we introduce generalisations19 of three solution concepts for complete games, namely the -value, the Shapley20 value and the nucleolus. For minimal incomplete games, we show that all21 of the generalised values coincide. We call it the average value and provide22 dierent axiomatisations. For incomplete games with dened upper vector, we23 show that the generalised values do not coincide in general. This highlights24 the importance and also the diculty of considering more general classes of25 incomplete games.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50201 - Economic Theory
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theory and Decision
ISSN
0040-5833
e-ISSN
1573-7187
Svazek periodika
Neudeven
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
29
Strana od-do
—
Kód UT WoS článku
001026595300001
EID výsledku v databázi Scopus
—