Positivity and convexity in incomplete cooperative games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985807%3A_____%2F24%3A00587911" target="_blank" >RIV/67985807:_____/24:00587911 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10491183
Výsledek na webu
<a href="https://doi.org/10.1007/s10479-024-06082-6" target="_blank" >https://doi.org/10.1007/s10479-024-06082-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10479-024-06082-6" target="_blank" >10.1007/s10479-024-06082-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Positivity and convexity in incomplete cooperative games
Popis výsledku v původním jazyce
Incomplete cooperative games generalize the classical model of cooperative games by omitting the values of some of the coalitions. This allows for incorporating uncertainty into the model and studying the underlying games and possible payoff distributions based only on the partial information. In this paper, we conduct a systematic investigation of incomplete games, focusing on two important classes: positive and convex games. Regarding positivity, we generalize previous results from a special class of minimal incomplete games to a general setting. We characterize the non-extendability to a positive game by the existence of a certificate and provide a description of the set of positive extensions using its extreme games. These results also enable the construction of explicit formulas for several classes of incomplete games with special structures. The second part deals with convexity. We begin with the case of non-negative, minimal incomplete games. We establish the connection between incomplete games and the problem of completing partial functions and, consequently, provide a characterization of extendability and a full description of the set of symmetric convex extensions. This set serves as an approximation of the set of convex extensions.
Název v anglickém jazyce
Positivity and convexity in incomplete cooperative games
Popis výsledku anglicky
Incomplete cooperative games generalize the classical model of cooperative games by omitting the values of some of the coalitions. This allows for incorporating uncertainty into the model and studying the underlying games and possible payoff distributions based only on the partial information. In this paper, we conduct a systematic investigation of incomplete games, focusing on two important classes: positive and convex games. Regarding positivity, we generalize previous results from a special class of minimal incomplete games to a general setting. We characterize the non-extendability to a positive game by the existence of a certificate and provide a description of the set of positive extensions using its extreme games. These results also enable the construction of explicit formulas for several classes of incomplete games with special structures. The second part deals with convexity. We begin with the case of non-negative, minimal incomplete games. We establish the connection between incomplete games and the problem of completing partial functions and, consequently, provide a characterization of extendability and a full description of the set of symmetric convex extensions. This set serves as an approximation of the set of convex extensions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-11117S" target="_blank" >GA22-11117S: Globální analýza citlivosti a stabilita v optimalizačních úlohách</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Operations Research
ISSN
0254-5330
e-ISSN
1572-9338
Svazek periodika
340
Číslo periodika v rámci svazku
2-3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
25
Strana od-do
785-809
Kód UT WoS článku
001270194400002
EID výsledku v databázi Scopus
2-s2.0-85198393891