Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Facets of the cone of exact games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00556097" target="_blank" >RIV/67985556:_____/22:00556097 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00186-022-00770-4" target="_blank" >https://link.springer.com/article/10.1007/s00186-022-00770-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00186-022-00770-4" target="_blank" >10.1007/s00186-022-00770-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Facets of the cone of exact games

  • Popis výsledku v původním jazyce

    The class of exact transferable utility coalitional games, introduced in 1972 by Schmeidler, has been studied both in the context of game theory and in the context of imprecise probabilities. We characterize the cone of exact games by describing the minimal set of linear inequalities defining this cone. These facet-defining inequalities for the exact cone appear to correspond to certain set systems (= systems of coalitions). We noticed that non-empty proper coalitions having non-zero coefficients in these facet-defining inequalities form set systems with particular properties.nnMore specifically, we introduce the concept of a semi-balanced system of coalitions, which generalizes the classic concept of a balanced coalitional system in cooperative game theory. The semi-balanced coalitional systems provide valid inequalities for the exact cone and minimal semi-balanced systems (in the sense of inclusion of set systems) characterize this cone. We also introduce basic classification of minimal semi-balanced systems, their pictorial representatives and a substantial concept of an indecomposable (minimal) semi-balanced system of coalitions. The main result of the paper is that indecomposable semi-balanced systems are in one-to-one correspondence with facet-defining inequalities for the exact cone. The second relevant result is the rebuttal of a former conjecture claiming that a coalitional game is exact iff it is totally balanced and its anti-dual is also totally balanced. We additionally characterize those inequalities which are facet-defining both for the cone of exact games and for the cone of totally balanced games.

  • Název v anglickém jazyce

    Facets of the cone of exact games

  • Popis výsledku anglicky

    The class of exact transferable utility coalitional games, introduced in 1972 by Schmeidler, has been studied both in the context of game theory and in the context of imprecise probabilities. We characterize the cone of exact games by describing the minimal set of linear inequalities defining this cone. These facet-defining inequalities for the exact cone appear to correspond to certain set systems (= systems of coalitions). We noticed that non-empty proper coalitions having non-zero coefficients in these facet-defining inequalities form set systems with particular properties.nnMore specifically, we introduce the concept of a semi-balanced system of coalitions, which generalizes the classic concept of a balanced coalitional system in cooperative game theory. The semi-balanced coalitional systems provide valid inequalities for the exact cone and minimal semi-balanced systems (in the sense of inclusion of set systems) characterize this cone. We also introduce basic classification of minimal semi-balanced systems, their pictorial representatives and a substantial concept of an indecomposable (minimal) semi-balanced system of coalitions. The main result of the paper is that indecomposable semi-balanced systems are in one-to-one correspondence with facet-defining inequalities for the exact cone. The second relevant result is the rebuttal of a former conjecture claiming that a coalitional game is exact iff it is totally balanced and its anti-dual is also totally balanced. We additionally characterize those inequalities which are facet-defining both for the cone of exact games and for the cone of totally balanced games.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Methods of Operations Research

  • ISSN

    1432-2994

  • e-ISSN

    1432-5217

  • Svazek periodika

    95

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    46

  • Strana od-do

    35-80

  • Kód UT WoS článku

    000757714500001

  • EID výsledku v databázi Scopus

    2-s2.0-85124749808