Facets of the cone of exact games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F22%3A00556097" target="_blank" >RIV/67985556:_____/22:00556097 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00186-022-00770-4" target="_blank" >https://link.springer.com/article/10.1007/s00186-022-00770-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00186-022-00770-4" target="_blank" >10.1007/s00186-022-00770-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Facets of the cone of exact games
Popis výsledku v původním jazyce
The class of exact transferable utility coalitional games, introduced in 1972 by Schmeidler, has been studied both in the context of game theory and in the context of imprecise probabilities. We characterize the cone of exact games by describing the minimal set of linear inequalities defining this cone. These facet-defining inequalities for the exact cone appear to correspond to certain set systems (= systems of coalitions). We noticed that non-empty proper coalitions having non-zero coefficients in these facet-defining inequalities form set systems with particular properties.nnMore specifically, we introduce the concept of a semi-balanced system of coalitions, which generalizes the classic concept of a balanced coalitional system in cooperative game theory. The semi-balanced coalitional systems provide valid inequalities for the exact cone and minimal semi-balanced systems (in the sense of inclusion of set systems) characterize this cone. We also introduce basic classification of minimal semi-balanced systems, their pictorial representatives and a substantial concept of an indecomposable (minimal) semi-balanced system of coalitions. The main result of the paper is that indecomposable semi-balanced systems are in one-to-one correspondence with facet-defining inequalities for the exact cone. The second relevant result is the rebuttal of a former conjecture claiming that a coalitional game is exact iff it is totally balanced and its anti-dual is also totally balanced. We additionally characterize those inequalities which are facet-defining both for the cone of exact games and for the cone of totally balanced games.
Název v anglickém jazyce
Facets of the cone of exact games
Popis výsledku anglicky
The class of exact transferable utility coalitional games, introduced in 1972 by Schmeidler, has been studied both in the context of game theory and in the context of imprecise probabilities. We characterize the cone of exact games by describing the minimal set of linear inequalities defining this cone. These facet-defining inequalities for the exact cone appear to correspond to certain set systems (= systems of coalitions). We noticed that non-empty proper coalitions having non-zero coefficients in these facet-defining inequalities form set systems with particular properties.nnMore specifically, we introduce the concept of a semi-balanced system of coalitions, which generalizes the classic concept of a balanced coalitional system in cooperative game theory. The semi-balanced coalitional systems provide valid inequalities for the exact cone and minimal semi-balanced systems (in the sense of inclusion of set systems) characterize this cone. We also introduce basic classification of minimal semi-balanced systems, their pictorial representatives and a substantial concept of an indecomposable (minimal) semi-balanced system of coalitions. The main result of the paper is that indecomposable semi-balanced systems are in one-to-one correspondence with facet-defining inequalities for the exact cone. The second relevant result is the rebuttal of a former conjecture claiming that a coalitional game is exact iff it is totally balanced and its anti-dual is also totally balanced. We additionally characterize those inequalities which are facet-defining both for the cone of exact games and for the cone of totally balanced games.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-04579S" target="_blank" >GA19-04579S: Struktury podmíněné nezávislosti: metody polyedrální geometrie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods of Operations Research
ISSN
1432-2994
e-ISSN
1432-5217
Svazek periodika
95
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
46
Strana od-do
35-80
Kód UT WoS článku
000757714500001
EID výsledku v databázi Scopus
2-s2.0-85124749808