Facets of the cone of totally balanced games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F19%3A00511152" target="_blank" >RIV/67985556:_____/19:00511152 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00186-019-00672-y" target="_blank" >https://link.springer.com/article/10.1007%2Fs00186-019-00672-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00186-019-00672-y" target="_blank" >10.1007/s00186-019-00672-y</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Facets of the cone of totally balanced games
Popis výsledku v původním jazyce
The class of totally balanced games is a class of transferable-utility coalitional games providing important models of cooperative behavior used in mathematical economics. They coincide with market games of Shapley and Shubik and every totally balanced game is also representable as the minimum of a finite set of additive games. In this paper we characterize the polyhedral cone of totally balanced games by describing its facets. Our main result is that there is a correspondence between facet-defining inequalities for the cone and the class of special balanced systems of coalitions, the so-called irreducible min-balanced systems. Our method is based on refining the notion of balancedness introduced by Shapley. We also formulate a conjecture about what are the facets of the cone of exact games, which addresses an open problem appearing in the literature.
Název v anglickém jazyce
Facets of the cone of totally balanced games
Popis výsledku anglicky
The class of totally balanced games is a class of transferable-utility coalitional games providing important models of cooperative behavior used in mathematical economics. They coincide with market games of Shapley and Shubik and every totally balanced game is also representable as the minimum of a finite set of additive games. In this paper we characterize the polyhedral cone of totally balanced games by describing its facets. Our main result is that there is a correspondence between facet-defining inequalities for the cone and the class of special balanced systems of coalitions, the so-called irreducible min-balanced systems. Our method is based on refining the notion of balancedness introduced by Shapley. We also formulate a conjecture about what are the facets of the cone of exact games, which addresses an open problem appearing in the literature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-12010S" target="_blank" >GA16-12010S: Struktury podmíněné nezávislosti: kombinatorické a optimalizační metody</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Methods of Operations Research
ISSN
1432-2994
e-ISSN
—
Svazek periodika
90
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
29
Strana od-do
271-300
Kód UT WoS článku
000496600500006
EID výsledku v databázi Scopus
2-s2.0-85066154003