On attempts to characterize facet-defining inequalities of the cone of exact games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985556%3A_____%2F18%3A00490915" target="_blank" >RIV/67985556:_____/18:00490915 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On attempts to characterize facet-defining inequalities of the cone of exact games
Popis výsledku v původním jazyce
The sets of balanced, totally balanced, exact and supermodular games play an important role in cooperative game theory. These sets of games are known to be polyhedral cones. The (unique) non-redundant description of these cones by means of the so-called facet-defining inequalities is known in cases of balanced games and supermodular games, respectively. The facet description of the cones of exact games and totally balanced games are not known and we present conjectures about what are the facet-defining inequalities for these cones. We introduce the concept of an irreducible min-balanced set system and conjecture that the facet-defining inequalities for the cone of totally balanced games correspond to these set systems. The conjecture concerning exact games is that the facet-defining inequalities for this cone are those which correspond to irreducible min-balanced systems on strict subsets of the set of players and their conjugate inequalities. A consequence of the validity of the conjectures would be a novel result saying that a game m is exact if and only if m and its reflection are totally balanced.
Název v anglickém jazyce
On attempts to characterize facet-defining inequalities of the cone of exact games
Popis výsledku anglicky
The sets of balanced, totally balanced, exact and supermodular games play an important role in cooperative game theory. These sets of games are known to be polyhedral cones. The (unique) non-redundant description of these cones by means of the so-called facet-defining inequalities is known in cases of balanced games and supermodular games, respectively. The facet description of the cones of exact games and totally balanced games are not known and we present conjectures about what are the facet-defining inequalities for these cones. We introduce the concept of an irreducible min-balanced set system and conjecture that the facet-defining inequalities for the cone of totally balanced games correspond to these set systems. The conjecture concerning exact games is that the facet-defining inequalities for this cone are those which correspond to irreducible min-balanced systems on strict subsets of the set of players and their conjugate inequalities. A consequence of the validity of the conjectures would be a novel result saying that a game m is exact if and only if m and its reflection are totally balanced.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-12010S" target="_blank" >GA16-12010S: Struktury podmíněné nezávislosti: kombinatorické a optimalizační metody</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 11th Workshop on Uncertainty Processing (WUPES’18)
ISBN
978-80-7378-361-7
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
177-187
Název nakladatele
MatfyzPress, Publishing House of the Faculty of Mathematics and Physics Charles University
Místo vydání
Praha
Místo konání akce
Třeboň
Datum konání akce
6. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—