t-Structures on stable derivators and Grothendieck hearts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471932" target="_blank" >RIV/00216208:11320/23:10471932 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P7nyF9.kQ9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=P7nyF9.kQ9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2023.109139" target="_blank" >10.1016/j.aim.2023.109139</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
t-Structures on stable derivators and Grothendieck hearts
Popis výsledku v původním jazyce
We prove that, given any strong and stable derivator and a t-structure in its base triangulated category D, the t structure canonically lifts to all the (coherent) diagram categories and each incoherent diagram in the heart uniquely lifts to a coherent one. We use this to show that the t structure being compactly generated implies that the coaisle is closed under directed homotopy colimits which, in turn, implies that the heart is an (Ab.5) Abelian category. If, moreover, D is a well-generated algebraic or topological triangulated category, then the heart of any accessibly embedded (in particular, compactly generated) t-structure has a generator. As a consequence, it follows that the heart of any compactly generated t-structure of a well generated algebraic or topological triangulated category is a Grothendieck Abelian category. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
Název v anglickém jazyce
t-Structures on stable derivators and Grothendieck hearts
Popis výsledku anglicky
We prove that, given any strong and stable derivator and a t-structure in its base triangulated category D, the t structure canonically lifts to all the (coherent) diagram categories and each incoherent diagram in the heart uniquely lifts to a coherent one. We use this to show that the t structure being compactly generated implies that the coaisle is closed under directed homotopy colimits which, in turn, implies that the heart is an (Ab.5) Abelian category. If, moreover, D is a well-generated algebraic or topological triangulated category, then the heart of any accessibly embedded (in particular, compactly generated) t-structure has a generator. As a consequence, it follows that the heart of any compactly generated t-structure of a well generated algebraic or topological triangulated category is a Grothendieck Abelian category. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Mathematics
ISSN
0001-8708
e-ISSN
1090-2082
Svazek periodika
429
Číslo periodika v rámci svazku
15 September 2023
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
70
Strana od-do
109139
Kód UT WoS článku
001032944300001
EID výsledku v databázi Scopus
—