Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

t-Structures with Grothendieck hearts via functor categories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10471933" target="_blank" >RIV/00216208:11320/23:10471933 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3KtINi.SZ6" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=3KtINi.SZ6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00029-023-00872-9" target="_blank" >10.1007/s00029-023-00872-9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    t-Structures with Grothendieck hearts via functor categories

  • Popis výsledku v původním jazyce

    We study when the heart of a t-structure in a triangulated category D with coproducts is AB5 or a Grothendieck category. If D satisfies Brown representability, a t-structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t-cogenerating object. If D is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t-structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t-structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or t-cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from D to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in D. This allows us to show that any standard well generated triangulated category D possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t-structures in such triangulated categories.

  • Název v anglickém jazyce

    t-Structures with Grothendieck hearts via functor categories

  • Popis výsledku anglicky

    We study when the heart of a t-structure in a triangulated category D with coproducts is AB5 or a Grothendieck category. If D satisfies Brown representability, a t-structure has an AB5 heart with an injective cogenerator and coproduct-preserving associated homological functor if, and only if, the coaisle has a pure-injective t-cogenerating object. If D is standard well generated, such a heart is automatically a Grothendieck category. For compactly generated t-structures (in any ambient triangulated category with coproducts), we prove that the heart is a locally finitely presented Grothendieck category. We use functor categories and the proofs rely on two main ingredients. Firstly, we express the heart of any t-structure in any triangulated category as a Serre quotient of the category of finitely presented additive functors for suitable choices of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or t-cogenerating subcategories. Secondly, we study coproduct-preserving homological functors from D to complete AB5 abelian categories with injective cogenerators and classify them, up to a so-called computational equivalence, in terms of pure-injective objects in D. This allows us to show that any standard well generated triangulated category D possesses a universal such coproduct-preserving homological functor, to develop a purity theory and to prove that pure-injective objects always cogenerate t-structures in such triangulated categories.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Selecta Mathematica-New Series

  • ISSN

    1420-9020

  • e-ISSN

    1420-9020

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    73

  • Strana od-do

    77

  • Kód UT WoS článku

    001100376100001

  • EID výsledku v databázi Scopus

    2-s2.0-85174218007