Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Derived, coderived, and contraderived categories of locally presentable abelian categories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00545361" target="_blank" >RIV/67985840:_____/22:00545361 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/22:10452303

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jpaa.2021.106883" target="_blank" >https://doi.org/10.1016/j.jpaa.2021.106883</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jpaa.2021.106883" target="_blank" >10.1016/j.jpaa.2021.106883</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Derived, coderived, and contraderived categories of locally presentable abelian categories

  • Popis výsledku v původním jazyce

    For a locally presentable abelian category B with a projective generator, we construct the projective derived and contraderived model structures on the category of complexes, proving in particular the existence of enough homotopy projective complexes of projective objects. We also show that the derived category D(B) is generated, as a triangulated category with coproducts, by the projective generator of B. For a Grothendieck abelian category A, we construct the injective derived and coderived model structures on complexes. Assuming Vopěnka’s principle, we prove that the derived category D(A) is generated, as a triangulated category with products, by the injective cogenerator of A. We also define the notion of an exact category with an object size function and prove that the derived category of any such exact category with exact κ-directed colimits of chains of admissible monomorphisms has Hom sets. Hence the derived category of any locally presentable abelian category has Hom sets.

  • Název v anglickém jazyce

    Derived, coderived, and contraderived categories of locally presentable abelian categories

  • Popis výsledku anglicky

    For a locally presentable abelian category B with a projective generator, we construct the projective derived and contraderived model structures on the category of complexes, proving in particular the existence of enough homotopy projective complexes of projective objects. We also show that the derived category D(B) is generated, as a triangulated category with coproducts, by the projective generator of B. For a Grothendieck abelian category A, we construct the injective derived and coderived model structures on complexes. Assuming Vopěnka’s principle, we prove that the derived category D(A) is generated, as a triangulated category with products, by the injective cogenerator of A. We also define the notion of an exact category with an object size function and prove that the derived category of any such exact category with exact κ-directed colimits of chains of admissible monomorphisms has Hom sets. Hence the derived category of any locally presentable abelian category has Hom sets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Pure and Applied Algebra

  • ISSN

    0022-4049

  • e-ISSN

    1873-1376

  • Svazek periodika

    226

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    39

  • Strana od-do

    106883

  • Kód UT WoS článku

    000703984500021

  • EID výsledku v databázi Scopus

    2-s2.0-85114424531