Derived, coderived, and contraderived categories of locally presentable abelian categories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00545361" target="_blank" >RIV/67985840:_____/22:00545361 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10452303
Výsledek na webu
<a href="https://doi.org/10.1016/j.jpaa.2021.106883" target="_blank" >https://doi.org/10.1016/j.jpaa.2021.106883</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jpaa.2021.106883" target="_blank" >10.1016/j.jpaa.2021.106883</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Derived, coderived, and contraderived categories of locally presentable abelian categories
Popis výsledku v původním jazyce
For a locally presentable abelian category B with a projective generator, we construct the projective derived and contraderived model structures on the category of complexes, proving in particular the existence of enough homotopy projective complexes of projective objects. We also show that the derived category D(B) is generated, as a triangulated category with coproducts, by the projective generator of B. For a Grothendieck abelian category A, we construct the injective derived and coderived model structures on complexes. Assuming Vopěnka’s principle, we prove that the derived category D(A) is generated, as a triangulated category with products, by the injective cogenerator of A. We also define the notion of an exact category with an object size function and prove that the derived category of any such exact category with exact κ-directed colimits of chains of admissible monomorphisms has Hom sets. Hence the derived category of any locally presentable abelian category has Hom sets.
Název v anglickém jazyce
Derived, coderived, and contraderived categories of locally presentable abelian categories
Popis výsledku anglicky
For a locally presentable abelian category B with a projective generator, we construct the projective derived and contraderived model structures on the category of complexes, proving in particular the existence of enough homotopy projective complexes of projective objects. We also show that the derived category D(B) is generated, as a triangulated category with coproducts, by the projective generator of B. For a Grothendieck abelian category A, we construct the injective derived and coderived model structures on complexes. Assuming Vopěnka’s principle, we prove that the derived category D(A) is generated, as a triangulated category with products, by the injective cogenerator of A. We also define the notion of an exact category with an object size function and prove that the derived category of any such exact category with exact κ-directed colimits of chains of admissible monomorphisms has Hom sets. Hence the derived category of any locally presentable abelian category has Hom sets.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-13778S" target="_blank" >GA20-13778S: Symetrie, duality a aproximace v derivované algebraické geometrii a teorii reprezentací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Pure and Applied Algebra
ISSN
0022-4049
e-ISSN
1873-1376
Svazek periodika
226
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
39
Strana od-do
106883
Kód UT WoS článku
000703984500021
EID výsledku v databázi Scopus
2-s2.0-85114424531