Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On Kitaoka's conjecture and lifting problem for universal quadratic forms

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10472017" target="_blank" >RIV/00216208:11320/23:10472017 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gr-du982I5" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gr-du982I5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/blms.12762" target="_blank" >10.1112/blms.12762</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On Kitaoka's conjecture and lifting problem for universal quadratic forms

  • Popis výsledku v původním jazyce

    For a totally positive definite quadratic form over the ring of integers of a totally real number field K, we show that there are only finitely many totally real field extensions of K of a fixed degree over which the form is universal (namely, those that have a short basis in a suitable sense). Along the way we give a general construction of a universal form of rank bounded by D(logD)d-1, where d is the degree of K over Q and D is its discriminant. Furthermore, for any fixed degree we prove (weak) Kitaoka&apos;s conjecture that there are only finitely many totally real number fields with a universal ternary quadratic form.

  • Název v anglickém jazyce

    On Kitaoka's conjecture and lifting problem for universal quadratic forms

  • Popis výsledku anglicky

    For a totally positive definite quadratic form over the ring of integers of a totally real number field K, we show that there are only finitely many totally real field extensions of K of a fixed degree over which the form is universal (namely, those that have a short basis in a suitable sense). Along the way we give a general construction of a universal form of rank bounded by D(logD)d-1, where d is the degree of K over Q and D is its discriminant. Furthermore, for any fixed degree we prove (weak) Kitaoka&apos;s conjecture that there are only finitely many totally real number fields with a universal ternary quadratic form.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GM21-00420M" target="_blank" >GM21-00420M: Univerzální kvadratické formy a třídová čísla</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Bulletin of the London Mathematical Society

  • ISSN

    0024-6093

  • e-ISSN

    1469-2120

  • Svazek periodika

    55

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    854-864

  • Kód UT WoS článku

    000893525600001

  • EID výsledku v databázi Scopus

    2-s2.0-85144767441