MockSAS: Facilitating the Evaluation of Bandit Algorithms in Self-adaptive Systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474041" target="_blank" >RIV/00216208:11320/23:10474041 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-36889-9_14" target="_blank" >https://doi.org/10.1007/978-3-031-36889-9_14</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-36889-9_14" target="_blank" >10.1007/978-3-031-36889-9_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
MockSAS: Facilitating the Evaluation of Bandit Algorithms in Self-adaptive Systems
Popis výsledku v původním jazyce
To be able to optimize themselves at runtime even in situations not specifically designed for, self-adaptive systems (SAS) often employ online learning that takes the form of sequentially applying actions to learn their effect on system utility. Employing multi-armed bandit (MAB) policies is a promising approach for implementing online learning in SAS. A main problem when employing MAB policies in this setting is that it is difficult to evaluate and compare different policies on their effectiveness in optimizing system utility. This stems from the high number of runs that are necessary for a trustworthy evaluation of a policy under different contexts. The problem is amplified when several policies and several contexts are considered. It is however pivotal for wider adoption of MAB policies in online learning in SAS to facilitate such evaluation and comparison. Towards this end, we provide a Python package, MockSAS, and a grammar that allows for specifying and running mocks of SAS: profiles of SAS that capture the relations between the contexts, the actions, and the rewards. Using MockSAS can drastically reduce the time and resources of performing comparisons of MAB policies in SAS. We evaluate the applicability of MockSAS and its accuracy in obtaining results compared to using the real system in a self-adaptation exemplar.
Název v anglickém jazyce
MockSAS: Facilitating the Evaluation of Bandit Algorithms in Self-adaptive Systems
Popis výsledku anglicky
To be able to optimize themselves at runtime even in situations not specifically designed for, self-adaptive systems (SAS) often employ online learning that takes the form of sequentially applying actions to learn their effect on system utility. Employing multi-armed bandit (MAB) policies is a promising approach for implementing online learning in SAS. A main problem when employing MAB policies in this setting is that it is difficult to evaluate and compare different policies on their effectiveness in optimizing system utility. This stems from the high number of runs that are necessary for a trustworthy evaluation of a policy under different contexts. The problem is amplified when several policies and several contexts are considered. It is however pivotal for wider adoption of MAB policies in online learning in SAS to facilitate such evaluation and comparison. Towards this end, we provide a Python package, MockSAS, and a grammar that allows for specifying and running mocks of SAS: profiles of SAS that capture the relations between the contexts, the actions, and the rewards. Using MockSAS can drastically reduce the time and resources of performing comparisons of MAB policies in SAS. We evaluate the applicability of MockSAS and its accuracy in obtaining results compared to using the real system in a self-adaptation exemplar.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Software Architecture. ECSA 2022 Tracks and Workshops
ISBN
978-3-031-36888-2
ISSN
—
e-ISSN
—
Počet stran výsledku
16
Strana od-do
183-198
Název nakladatele
Springer Nature
Místo vydání
Switzerland
Místo konání akce
Prague, Czech Republic
Datum konání akce
19. 9. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001310761900014