B-Spline Pythagorean Hodograph Curves in Clifford Algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10474949" target="_blank" >RIV/00216208:11320/23:10474949 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/49777513:23520/23:43967429
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sdMltY-_xv" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=sdMltY-_xv</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00006-022-01255-7" target="_blank" >10.1007/s00006-022-01255-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
B-Spline Pythagorean Hodograph Curves in Clifford Algebras
Popis výsledku v původním jazyce
In several recent publications B-spline functions appeared with control points from abstract algebras, e.g. complex numbers, quaternions or Clifford algebras. In the context of constructions of Pythagorean hodograph curves, computations with these B-splines occur, mixing the components of the control points. In this paper we detect certain unifying patterns common to all these computations. We show that two essential components can be separated. The first one is the usual B-spline function squaring and integration, producing a new knot sequence and a new array of real coefficients for the control point computation. The second one is a special commutative multiplication which can be defined even in non-commutative algebras. We use this general Clifford algebra based approach to reconstruct some known results for the signatures (2, 0), (3, 0) and (2, 1) and add a new construction for the signature (3, 1). This last case is essential for the description of canal surfaces. It is shown that Clifford algebra is an especially suitable tool for the general description of B-spline curves with Pythagorean hodograph property. The presented unifying definition of PH B-splines is general and is not limited to any particular knot sequences or control points. In a certain sense, this paper can be considered as a continuation of the 2002 article by Choi et al. with regard to the B-splines.
Název v anglickém jazyce
B-Spline Pythagorean Hodograph Curves in Clifford Algebras
Popis výsledku anglicky
In several recent publications B-spline functions appeared with control points from abstract algebras, e.g. complex numbers, quaternions or Clifford algebras. In the context of constructions of Pythagorean hodograph curves, computations with these B-splines occur, mixing the components of the control points. In this paper we detect certain unifying patterns common to all these computations. We show that two essential components can be separated. The first one is the usual B-spline function squaring and integration, producing a new knot sequence and a new array of real coefficients for the control point computation. The second one is a special commutative multiplication which can be defined even in non-commutative algebras. We use this general Clifford algebra based approach to reconstruct some known results for the signatures (2, 0), (3, 0) and (2, 1) and add a new construction for the signature (3, 1). This last case is essential for the description of canal surfaces. It is shown that Clifford algebra is an especially suitable tool for the general description of B-spline curves with Pythagorean hodograph property. The presented unifying definition of PH B-splines is general and is not limited to any particular knot sequences or control points. In a certain sense, this paper can be considered as a continuation of the 2002 article by Choi et al. with regard to the B-splines.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-11473S" target="_blank" >GA20-11473S: Symetrie a invariance v analýze, geometrickém modelování a teorii optimálního řízení</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Applied Clifford Algebras
ISSN
0188-7009
e-ISSN
1661-4909
Svazek periodika
33
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
9
Kód UT WoS článku
000906898000001
EID výsledku v databázi Scopus
2-s2.0-85145611027