Interpolation of Hermite data by clamped Minkowski Pythagorean hodograph B-spline curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F21%3A43961320" target="_blank" >RIV/49777513:23520/21:43961320 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042721000881" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042721000881</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2021.113469" target="_blank" >10.1016/j.cam.2021.113469</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interpolation of Hermite data by clamped Minkowski Pythagorean hodograph B-spline curves
Popis výsledku v původním jazyce
In this paper, the problem of Hermite interpolation by clamped Minkowski Pythagorean hodograph (MPH) B-spline curves is considered. Using the properties of B-splines, our intention is to use the MPH curves of degrees lower than in algorithms designed before. Special attention is devoted to C1/C2 Hermite interpolation by MPH B-spline cubics/quintics. The resulting interpolants are obtained by exploiting properties of B-spline basis functions and via solving special quadratic and linear equations in Clifford algebra Cℓ2,1. All the presented algorithms are purely symbolic. The results are confirmed by several applications, in particular we use them to generate an approximate conversion of a given analytic curve to MPH B-spline curve with a high order of approximation, then to an efficient approximation of the medial axis transform of a planar domain leading to NURBS representation of the (trimmed) offsets of the domain boundaries, and to skinning of systems of circles in plane.
Název v anglickém jazyce
Interpolation of Hermite data by clamped Minkowski Pythagorean hodograph B-spline curves
Popis výsledku anglicky
In this paper, the problem of Hermite interpolation by clamped Minkowski Pythagorean hodograph (MPH) B-spline curves is considered. Using the properties of B-splines, our intention is to use the MPH curves of degrees lower than in algorithms designed before. Special attention is devoted to C1/C2 Hermite interpolation by MPH B-spline cubics/quintics. The resulting interpolants are obtained by exploiting properties of B-spline basis functions and via solving special quadratic and linear equations in Clifford algebra Cℓ2,1. All the presented algorithms are purely symbolic. The results are confirmed by several applications, in particular we use them to generate an approximate conversion of a given analytic curve to MPH B-spline curve with a high order of approximation, then to an efficient approximation of the medial axis transform of a planar domain leading to NURBS representation of the (trimmed) offsets of the domain boundaries, and to skinning of systems of circles in plane.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Svazek periodika
392
Číslo periodika v rámci svazku
15 August 2021
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
000634783600021
EID výsledku v databázi Scopus
2-s2.0-85101636957