Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955088" target="_blank" >RIV/49777513:23520/19:43955088 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cam.2019.04.029" target="_blank" >10.1016/j.cam.2019.04.029</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves

  • Popis výsledku v původním jazyce

    Methods using Pythagorean hodographs both in Euclidean plane and Minkowski space are often used in geometric modelling when necessary to solve the problem of rationality of offsets of planar domains. A main justification for studying and formulating approximation and interpolation algorithms based on the called Minkowski Pythagorean hodograph (MPH) curves is the fact that they make the trimming procedure of inner offsets considerably simpler. This is why one can find many existing techniques in literature. In this paper a simple computational approach to parametric/geometric Hermite interpolation problem by polynomial MPH curves in R 2,1 is presented and an algorithm to construct such interpolants is described. The main idea is to construct first not a tangent but a normal vector space satisfying the prescribed MPH property that matches the given first order conditions, and then to compute a curve possessing this constructed normal vector space and satisfying all the remaining interpolation conditions. Compared to other methods using special formalisms (e.g. Clifford algebra), the presented approach is based only on solving systems of linear equations. The results are confirmed by number of examples.

  • Název v anglickém jazyce

    Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves

  • Popis výsledku anglicky

    Methods using Pythagorean hodographs both in Euclidean plane and Minkowski space are often used in geometric modelling when necessary to solve the problem of rationality of offsets of planar domains. A main justification for studying and formulating approximation and interpolation algorithms based on the called Minkowski Pythagorean hodograph (MPH) curves is the fact that they make the trimming procedure of inner offsets considerably simpler. This is why one can find many existing techniques in literature. In this paper a simple computational approach to parametric/geometric Hermite interpolation problem by polynomial MPH curves in R 2,1 is presented and an algorithm to construct such interpolants is described. The main idea is to construct first not a tangent but a normal vector space satisfying the prescribed MPH property that matches the given first order conditions, and then to compute a curve possessing this constructed normal vector space and satisfying all the remaining interpolation conditions. Compared to other methods using special formalisms (e.g. Clifford algebra), the presented approach is based only on solving systems of linear equations. The results are confirmed by number of examples.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

  • ISSN

    0377-0427

  • e-ISSN

  • Svazek periodika

    361

  • Číslo periodika v rámci svazku

    1 December

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    12

  • Strana od-do

    283-294

  • Kód UT WoS článku

    000474316500018

  • EID výsledku v databázi Scopus

    2-s2.0-85065620605