Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F19%3A43955088" target="_blank" >RIV/49777513:23520/19:43955088 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042719302262?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2019.04.029" target="_blank" >10.1016/j.cam.2019.04.029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves
Popis výsledku v původním jazyce
Methods using Pythagorean hodographs both in Euclidean plane and Minkowski space are often used in geometric modelling when necessary to solve the problem of rationality of offsets of planar domains. A main justification for studying and formulating approximation and interpolation algorithms based on the called Minkowski Pythagorean hodograph (MPH) curves is the fact that they make the trimming procedure of inner offsets considerably simpler. This is why one can find many existing techniques in literature. In this paper a simple computational approach to parametric/geometric Hermite interpolation problem by polynomial MPH curves in R 2,1 is presented and an algorithm to construct such interpolants is described. The main idea is to construct first not a tangent but a normal vector space satisfying the prescribed MPH property that matches the given first order conditions, and then to compute a curve possessing this constructed normal vector space and satisfying all the remaining interpolation conditions. Compared to other methods using special formalisms (e.g. Clifford algebra), the presented approach is based only on solving systems of linear equations. The results are confirmed by number of examples.
Název v anglickém jazyce
Linear computational approach to interpolations with polynomial Minkowski Pythagorean hodograph curves
Popis výsledku anglicky
Methods using Pythagorean hodographs both in Euclidean plane and Minkowski space are often used in geometric modelling when necessary to solve the problem of rationality of offsets of planar domains. A main justification for studying and formulating approximation and interpolation algorithms based on the called Minkowski Pythagorean hodograph (MPH) curves is the fact that they make the trimming procedure of inner offsets considerably simpler. This is why one can find many existing techniques in literature. In this paper a simple computational approach to parametric/geometric Hermite interpolation problem by polynomial MPH curves in R 2,1 is presented and an algorithm to construct such interpolants is described. The main idea is to construct first not a tangent but a normal vector space satisfying the prescribed MPH property that matches the given first order conditions, and then to compute a curve possessing this constructed normal vector space and satisfying all the remaining interpolation conditions. Compared to other methods using special formalisms (e.g. Clifford algebra), the presented approach is based only on solving systems of linear equations. The results are confirmed by number of examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1506" target="_blank" >LO1506: Podpora udržitelnosti centra NTIS - Nové technologie pro informační společnost</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
ISSN
0377-0427
e-ISSN
—
Svazek periodika
361
Číslo periodika v rámci svazku
1 December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
283-294
Kód UT WoS článku
000474316500018
EID výsledku v databázi Scopus
2-s2.0-85065620605