A Unified Pythagorean Hodograph Approach to the Medial Axis Transform and Offset Approximation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F49777513%3A23520%2F11%3A43898294" target="_blank" >RIV/49777513:23520/11:43898294 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2011.02.001" target="_blank" >http://dx.doi.org/10.1016/j.cam.2011.02.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2011.02.001" target="_blank" >10.1016/j.cam.2011.02.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Unified Pythagorean Hodograph Approach to the Medial Axis Transform and Offset Approximation
Popis výsledku v původním jazyce
Algorithms based on Pythagorean hodographs (PH) both in Euclidean plane and Minkowski space share common goals, the main one being rationality of offsets of planar domains. However, only separate interpolation techniques based on these curves can be found in the literature. It was recently revealed that rational PH curves in Euclidean plane and Minkowski space are very closely related. In this paper, we continue the discussion of the interplay between spatial MPH curves and their associated planar PH curves from the point of view of Hermite interpolation. Based on this approach we design a new, simple interpolation algorithm. The main advantage of the presented unifying method lies in the fact that it uses, only after some simple additional computations, an arbitrary algorithm for interpolation by planar PH curves also for interpolation by spatial MPH curves. We present the functionality of our method on $G^1$ Hermite data, nevertheless one could obtain also higher order algorithms.
Název v anglickém jazyce
A Unified Pythagorean Hodograph Approach to the Medial Axis Transform and Offset Approximation
Popis výsledku anglicky
Algorithms based on Pythagorean hodographs (PH) both in Euclidean plane and Minkowski space share common goals, the main one being rationality of offsets of planar domains. However, only separate interpolation techniques based on these curves can be found in the literature. It was recently revealed that rational PH curves in Euclidean plane and Minkowski space are very closely related. In this paper, we continue the discussion of the interplay between spatial MPH curves and their associated planar PH curves from the point of view of Hermite interpolation. Based on this approach we design a new, simple interpolation algorithm. The main advantage of the presented unifying method lies in the fact that it uses, only after some simple additional computations, an arbitrary algorithm for interpolation by planar PH curves also for interpolation by spatial MPH curves. We present the functionality of our method on $G^1$ Hermite data, nevertheless one could obtain also higher order algorithms.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
235
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
3413-3424
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—