Dimension of images and graphs of little Lipschitz functions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475610" target="_blank" >RIV/00216208:11320/23:10475610 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.8ejxeoocr" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=.8ejxeoocr</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4064/fm147-12-2022" target="_blank" >10.4064/fm147-12-2022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dimension of images and graphs of little Lipschitz functions
Popis výsledku v původním jazyce
A mapping f : X -> Y between metric spaces is termed little Lipschitz if the function lip f : X -> [0, infinity], lip f (x) = lim inf(r -> 0) diam f(B(x, r))/r, is finite at every point. We prove that for each s > 0 the little Lipschitz mapping f satisfies the inequality H-s (f(X)) <= integral(X) (lip f)(s) dP(s) as long as {lip f = 0} is of sigma-finite measure P-s, where H-s and P-s denote the s-dimensional Hausdorff and packing measures, respectively. We derive a dimensional in-equality for little Lipschitz mappings dim(H) f (X) <= dim(H) f <= (dim) over bar (P) X and we provide a few examples that show that these inequalities are the best possible.
Název v anglickém jazyce
Dimension of images and graphs of little Lipschitz functions
Popis výsledku anglicky
A mapping f : X -> Y between metric spaces is termed little Lipschitz if the function lip f : X -> [0, infinity], lip f (x) = lim inf(r -> 0) diam f(B(x, r))/r, is finite at every point. We prove that for each s > 0 the little Lipschitz mapping f satisfies the inequality H-s (f(X)) <= integral(X) (lip f)(s) dP(s) as long as {lip f = 0} is of sigma-finite measure P-s, where H-s and P-s denote the s-dimensional Hausdorff and packing measures, respectively. We derive a dimensional in-equality for little Lipschitz mappings dim(H) f (X) <= dim(H) f <= (dim) over bar (P) X and we provide a few examples that show that these inequalities are the best possible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fundamenta Mathematicae
ISSN
0016-2736
e-ISSN
1730-6329
Svazek periodika
262
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
PL - Polská republika
Počet stran výsledku
34
Strana od-do
37-70
Kód UT WoS článku
000970548700001
EID výsledku v databázi Scopus
2-s2.0-85171461608