Heuristics for Opinion Diffusion via Local Elections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475619" target="_blank" >RIV/00216208:11320/23:10475619 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-23101-8_10" target="_blank" >https://doi.org/10.1007/978-3-031-23101-8_10</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-23101-8_10" target="_blank" >10.1007/978-3-031-23101-8_10</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Heuristics for Opinion Diffusion via Local Elections
Popis výsledku v původním jazyce
Most research on influence maximization considers asimple diffusion model, in which binary information is being diffused (i.e., vertices - corresponding to agents - are either active or passive). Here we consider a more involved model of opinion diffusion: In our model, each vertex in the network has either approval-based or ordinal-based preferences and we consider diffusion processes in which each vertex is influenced by its neighborhood following a local election, according to certain "local" voting rules. We are interested in externally changing the preferences of certain vertices (i.e., campaigning) in order to influence the resulting election, whose winner is decided according to some "global" voting rule, operating after the diffusion converges. As the corresponding combinatorial problem is computationally intractable in general, and as we wish to incorporate probabilistic diffusion processes, we consider classic heuristics adapted to our setting: A greedy heuristic and a local search heuristic. We study their properties for plurality elections, approval elections, and ordinal elections, and evaluate their quality experimentally. The bottom line of our experiments is that the heuristics we propose perform reasonably well on both the real world and synthetic instances. Moreover, examining our results in detail also shows how the different parameters (ballot type, bribery type, graph structure, number of voters and candidates, etc.) influence the run time and quality of solutions. This knowledge can guide further research and applications.
Název v anglickém jazyce
Heuristics for Opinion Diffusion via Local Elections
Popis výsledku anglicky
Most research on influence maximization considers asimple diffusion model, in which binary information is being diffused (i.e., vertices - corresponding to agents - are either active or passive). Here we consider a more involved model of opinion diffusion: In our model, each vertex in the network has either approval-based or ordinal-based preferences and we consider diffusion processes in which each vertex is influenced by its neighborhood following a local election, according to certain "local" voting rules. We are interested in externally changing the preferences of certain vertices (i.e., campaigning) in order to influence the resulting election, whose winner is decided according to some "global" voting rule, operating after the diffusion converges. As the corresponding combinatorial problem is computationally intractable in general, and as we wish to incorporate probabilistic diffusion processes, we consider classic heuristics adapted to our setting: A greedy heuristic and a local search heuristic. We study their properties for plurality elections, approval elections, and ordinal elections, and evaluate their quality experimentally. The bottom line of our experiments is that the heuristics we propose perform reasonably well on both the real world and synthetic instances. Moreover, examining our results in detail also shows how the different parameters (ballot type, bribery type, graph structure, number of voters and candidates, etc.) influence the run time and quality of solutions. This knowledge can guide further research and applications.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
SOFSEM 2023: THEORY AND PRACTICE OF COMPUTER SCIENCE
ISBN
978-3-031-23100-1
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
144-158
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Novy Smokovec
Datum konání akce
15. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000916960700010