Students’ geometric understanding of partial derivatives and the locally linear approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475897" target="_blank" >RIV/00216208:11320/23:10475897 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VLHaEcxx_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VLHaEcxx_</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10649-023-10242-z" target="_blank" >10.1007/s10649-023-10242-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Students’ geometric understanding of partial derivatives and the locally linear approach
Popis výsledku v původním jazyce
We use Action-Process-Object-Schema (APOS) theory to study students' geometric understanding of partial derivatives of functions of two variables. This study contributes to research on the teaching and learning of differential multivariable calculus and its didactics. This is an important area due to its multiple applications in science, mathematics, engineering, and technology (STEM). The study tests a previously proposed model of mental constructions students may use to understand partial derivatives through a set of activities designed to help students make the conjectured constructions. The model is based on the local linearity of differentiable two-variable functions, and the model-based activities explore the relationship between partial derivatives and tangent plane in different representations. We used semi-structured interviews with eleven students whose teacher used the three-part cycle-Activities designed with the genetic decomposition; collaborative work in small groups and Class discussion; and Exercises for home (ACE)-as pedagogical strategy. The model-based activity set based on local linearity and the ACE strategy helped students construct a geometric understanding of partial derivatives. Results led to reconsider and further refine the model. This study also resulted in improving activity sets and obtaining information on students' construction of second-order and mixed partial derivatives.
Název v anglickém jazyce
Students’ geometric understanding of partial derivatives and the locally linear approach
Popis výsledku anglicky
We use Action-Process-Object-Schema (APOS) theory to study students' geometric understanding of partial derivatives of functions of two variables. This study contributes to research on the teaching and learning of differential multivariable calculus and its didactics. This is an important area due to its multiple applications in science, mathematics, engineering, and technology (STEM). The study tests a previously proposed model of mental constructions students may use to understand partial derivatives through a set of activities designed to help students make the conjectured constructions. The model is based on the local linearity of differentiable two-variable functions, and the model-based activities explore the relationship between partial derivatives and tangent plane in different representations. We used semi-structured interviews with eleven students whose teacher used the three-part cycle-Activities designed with the genetic decomposition; collaborative work in small groups and Class discussion; and Exercises for home (ACE)-as pedagogical strategy. The model-based activity set based on local linearity and the ACE strategy helped students construct a geometric understanding of partial derivatives. Results led to reconsider and further refine the model. This study also resulted in improving activity sets and obtaining information on students' construction of second-order and mixed partial derivatives.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50301 - Education, general; including training, pedagogy, didactics [and education systems]
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Educational Studies in Mathematics
ISSN
0013-1954
e-ISSN
1573-0816
Svazek periodika
2023
Číslo periodika v rámci svazku
0013-1954
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
69-91
Kód UT WoS článku
001010691700001
EID výsledku v databázi Scopus
2-s2.0-85162125748