Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Students’ geometric understanding of partial derivatives and the locally linear approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10475897" target="_blank" >RIV/00216208:11320/23:10475897 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VLHaEcxx_" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=7VLHaEcxx_</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10649-023-10242-z" target="_blank" >10.1007/s10649-023-10242-z</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Students’ geometric understanding of partial derivatives and the locally linear approach

  • Popis výsledku v původním jazyce

    We use Action-Process-Object-Schema (APOS) theory to study students&apos; geometric understanding of partial derivatives of functions of two variables. This study contributes to research on the teaching and learning of differential multivariable calculus and its didactics. This is an important area due to its multiple applications in science, mathematics, engineering, and technology (STEM). The study tests a previously proposed model of mental constructions students may use to understand partial derivatives through a set of activities designed to help students make the conjectured constructions. The model is based on the local linearity of differentiable two-variable functions, and the model-based activities explore the relationship between partial derivatives and tangent plane in different representations. We used semi-structured interviews with eleven students whose teacher used the three-part cycle-Activities designed with the genetic decomposition; collaborative work in small groups and Class discussion; and Exercises for home (ACE)-as pedagogical strategy. The model-based activity set based on local linearity and the ACE strategy helped students construct a geometric understanding of partial derivatives. Results led to reconsider and further refine the model. This study also resulted in improving activity sets and obtaining information on students&apos; construction of second-order and mixed partial derivatives.

  • Název v anglickém jazyce

    Students’ geometric understanding of partial derivatives and the locally linear approach

  • Popis výsledku anglicky

    We use Action-Process-Object-Schema (APOS) theory to study students&apos; geometric understanding of partial derivatives of functions of two variables. This study contributes to research on the teaching and learning of differential multivariable calculus and its didactics. This is an important area due to its multiple applications in science, mathematics, engineering, and technology (STEM). The study tests a previously proposed model of mental constructions students may use to understand partial derivatives through a set of activities designed to help students make the conjectured constructions. The model is based on the local linearity of differentiable two-variable functions, and the model-based activities explore the relationship between partial derivatives and tangent plane in different representations. We used semi-structured interviews with eleven students whose teacher used the three-part cycle-Activities designed with the genetic decomposition; collaborative work in small groups and Class discussion; and Exercises for home (ACE)-as pedagogical strategy. The model-based activity set based on local linearity and the ACE strategy helped students construct a geometric understanding of partial derivatives. Results led to reconsider and further refine the model. This study also resulted in improving activity sets and obtaining information on students&apos; construction of second-order and mixed partial derivatives.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50301 - Education, general; including training, pedagogy, didactics [and education systems]

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Educational Studies in Mathematics

  • ISSN

    0013-1954

  • e-ISSN

    1573-0816

  • Svazek periodika

    2023

  • Číslo periodika v rámci svazku

    0013-1954

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    23

  • Strana od-do

    69-91

  • Kód UT WoS článku

    001010691700001

  • EID výsledku v databázi Scopus

    2-s2.0-85162125748