A jump to the Narayana number for hereditary properties of ordered 3-uniform hypergraphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476262" target="_blank" >RIV/00216208:11320/23:10476262 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=95pq5m9Iol" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=95pq5m9Iol</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ejc.2023.103744" target="_blank" >10.1016/j.ejc.2023.103744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A jump to the Narayana number for hereditary properties of ordered 3-uniform hypergraphs
Popis výsledku v původním jazyce
For k, l >= 2 we consider ideals of edge l-colored complete k-uniform hypergraphs (n, x) with vertex sets [n] = {1, 2, ... n} for n is an element of N. An ideal is a set of such colored hypergraphs that is closed under the induced ordered sub-hypergraph relation. We obtain analogues of two results of Klazar (2010) who considered graphs, namely we prove two jumps for growth functions of such ideals of colored hypergraphs. The first jump is for any k, l >= 2 and says that the growth function is either eventually constant or at least n - k + 2. The second jump is only for k = 3 and l = 2 and says that the growth function of an ideal of edge two-colored complete 3-uniform hypergraphs grows either at most polynomially, or for n >= 23 at least as Gn where Gn is the sequence defined by G1 = G2 = 1, G3 = 2 and Gn = Gn-1 + Gn-3 for n >= 4. The lower bounds in both jumps are tight. (c) 2023 Elsevier Ltd. All rights reserved.
Název v anglickém jazyce
A jump to the Narayana number for hereditary properties of ordered 3-uniform hypergraphs
Popis výsledku anglicky
For k, l >= 2 we consider ideals of edge l-colored complete k-uniform hypergraphs (n, x) with vertex sets [n] = {1, 2, ... n} for n is an element of N. An ideal is a set of such colored hypergraphs that is closed under the induced ordered sub-hypergraph relation. We obtain analogues of two results of Klazar (2010) who considered graphs, namely we prove two jumps for growth functions of such ideals of colored hypergraphs. The first jump is for any k, l >= 2 and says that the growth function is either eventually constant or at least n - k + 2. The second jump is only for k = 3 and l = 2 and says that the growth function of an ideal of edge two-colored complete 3-uniform hypergraphs grows either at most polynomially, or for n >= 23 at least as Gn where Gn is the sequence defined by G1 = G2 = 1, G3 = 2 and Gn = Gn-1 + Gn-3 for n >= 4. The lower bounds in both jumps are tight. (c) 2023 Elsevier Ltd. All rights reserved.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
1095-9971
Svazek periodika
113
Číslo periodika v rámci svazku
October 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
48
Strana od-do
103744
Kód UT WoS článku
001010978300001
EID výsledku v databázi Scopus
2-s2.0-85160712480