Inversion sequences avoiding a triple of patterns of 3 letters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A10476766" target="_blank" >RIV/00216208:11320/23:10476766 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4kDMQ33p9j" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=4kDMQ33p9j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/11603" target="_blank" >10.37236/11603</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inversion sequences avoiding a triple of patterns of 3 letters
Popis výsledku v původním jazyce
An inversion sequence of length n is a sequence of integers e = e1...en which satisfies for each i in [n] = {1, 2, ... , n} the inequality 0 <= ei < i. For a set of patterns P, we let In(P) denote the set of inversion sequences of length n that avoid all the patterns from P. We say that two sets of patterns P and Q are IWilf-equivalent if |In(P)| = |In(Q)| for every n. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is 137, 138 or 139. In particular, to show that this number is exactly 137, it remains to prove {101, 102, 110} is IWilf equivalent to {021, 100, 101}, and {100, 110, 201} is IWilf equivalent to {100, 120, 210}.
Název v anglickém jazyce
Inversion sequences avoiding a triple of patterns of 3 letters
Popis výsledku anglicky
An inversion sequence of length n is a sequence of integers e = e1...en which satisfies for each i in [n] = {1, 2, ... , n} the inequality 0 <= ei < i. For a set of patterns P, we let In(P) denote the set of inversion sequences of length n that avoid all the patterns from P. We say that two sets of patterns P and Q are IWilf-equivalent if |In(P)| = |In(Q)| for every n. In this paper, we show that the number of I-Wilf-equivalence classes among triples of length-3 patterns is 137, 138 or 139. In particular, to show that this number is exactly 137, it remains to prove {101, 102, 110} is IWilf equivalent to {021, 100, 101}, and {100, 110, 201} is IWilf equivalent to {100, 120, 210}.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GX23-04949X" target="_blank" >GX23-04949X: Stěžejní otázky diskrétní geometrie</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Journal of Combinatorics
ISSN
1097-1440
e-ISSN
1077-8926
Svazek periodika
30
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
p319
Kód UT WoS článku
001049484500001
EID výsledku v databázi Scopus
2-s2.0-85167689746