An Empirical Comparison of Web Content Extraction Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A5SWUZ4MU" target="_blank" >RIV/00216208:11320/23:5SWUZ4MU - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/doi/10.1145/3539618.3591920" target="_blank" >https://dl.acm.org/doi/10.1145/3539618.3591920</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3539618.3591920" target="_blank" >10.1145/3539618.3591920</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Empirical Comparison of Web Content Extraction Algorithms
Popis výsledku v původním jazyce
"Main content extraction from web pages—sometimes also called boilerplate removal—has been a research topic for over two decades. Yet despite web pages being delivered in a machine-readable markup format, extracting the actual content is still a challenge today. Even with the latest HTML5 standard, which defines many semantic elements to mark content areas, web page authors do not always use semantic markup correctly or to its full potential, making it hard for automated systems to extract the relevant information. A high-precision, high-recall content extraction is crucial for downstream applications such as search engines, AI language tools, distraction-free reader modes in users’ browsers, and other general assistive technologies. For such a fundamental task, however, surprisingly few openly available extraction systems or training and benchmarking datasets exist. Even less research has gone into the rigorous evaluation and a true apples-to-apples comparison of the few extraction systems that do exist. To get a better grasp on the current state of the art in the field, we combine and clean eight existing human-labeled web content extraction datasets. On the combined dataset, we evaluate 14 competitive main content extraction systems and five baseline approaches. Finally, we build three ensembles as new state-of-the-art extraction baselines. We find that the performance of existing systems is quite genre-dependent and no single extractor performs best on all types of web pages."
Název v anglickém jazyce
An Empirical Comparison of Web Content Extraction Algorithms
Popis výsledku anglicky
"Main content extraction from web pages—sometimes also called boilerplate removal—has been a research topic for over two decades. Yet despite web pages being delivered in a machine-readable markup format, extracting the actual content is still a challenge today. Even with the latest HTML5 standard, which defines many semantic elements to mark content areas, web page authors do not always use semantic markup correctly or to its full potential, making it hard for automated systems to extract the relevant information. A high-precision, high-recall content extraction is crucial for downstream applications such as search engines, AI language tools, distraction-free reader modes in users’ browsers, and other general assistive technologies. For such a fundamental task, however, surprisingly few openly available extraction systems or training and benchmarking datasets exist. Even less research has gone into the rigorous evaluation and a true apples-to-apples comparison of the few extraction systems that do exist. To get a better grasp on the current state of the art in the field, we combine and clean eight existing human-labeled web content extraction datasets. On the combined dataset, we evaluate 14 competitive main content extraction systems and five baseline approaches. Finally, we build three ensembles as new state-of-the-art extraction baselines. We find that the performance of existing systems is quite genre-dependent and no single extractor performs best on all types of web pages."
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
"Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval"
ISBN
978-1-4503-9408-6
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
2594-2603
Název nakladatele
ACM
Místo vydání
Taipei Taiwan
Místo konání akce
Taipei Taiwan
Datum konání akce
1. 1. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—