LatinCy: Synthetic Trained Pipelines for Latin NLP
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F23%3A8ILUKGMT" target="_blank" >RIV/00216208:11320/23:8ILUKGMT - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/2305.04365" target="_blank" >http://arxiv.org/abs/2305.04365</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.48550/arXiv.2305.04365" target="_blank" >10.48550/arXiv.2305.04365</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LatinCy: Synthetic Trained Pipelines for Latin NLP
Popis výsledku v původním jazyce
"This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work."
Název v anglickém jazyce
LatinCy: Synthetic Trained Pipelines for Latin NLP
Popis výsledku anglicky
"This paper introduces LatinCy, a set of trained general purpose Latin-language "core" pipelines for use with the spaCy natural language processing framework. The models are trained on a large amount of available Latin data, including all five of the Latin Universal Dependency treebanks, which have been preprocessed to be compatible with each other. The result is a set of general models for Latin with good performance on a number of natural language processing tasks (e.g. the top-performing model yields POS tagging, 97.41% accuracy; lemmatization, 94.66% accuracy; morphological tagging 92.76% accuracy). The paper describes the model training, including its training data and parameterization, and presents the advantages to Latin-language researchers of having a spaCy model available for NLP work."
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
—
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů